1
|
Fokkens WJ, Lund VJ, Hopkins C, Hellings
PW, Kern R, Reitsma S, Toppila-Salmi S, Bernal-Sprekelsen M, Mullol
J, Alobid I, et al: European position paper on rhinosinusitis and
nasal polyps 2020. Rhinology. 58 (Suppl S29):S1–S464. 2020.
View Article : Google Scholar
|
2
|
Yim MT and Orlandi RR: Evolving Rhinology:
Understanding the burden of chronic rhinosinusitis today, tomorrow,
and beyond. Curr Allergy Asthma Rep. 20:72020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Y, Gevaert E, Lou H, Wang X, Zhang
L, Bachert C and Zhang N: Chronic rhinosinusitis in Asia. J Allergy
Clin Immunol. 140:1230–1239. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lourijsen ES, Fokkens WJ and Reitsma S:
Direct and indirect costs of Dutch adult patients with Chronic
Rhinosinusitis with nasal polyps. Rhinology. 58:213–217.
2020.PubMed/NCBI
|
5
|
Czerny MS, Namin A, Gratton MA and
Antisdel JL: Histopathological and clinical analysis of chronic
rhinosinusitis by subtype. Int Forum Allergy Rhinol. 4:463–469.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Van Zele T, Holtappels G, Gevaert P and
Bachert C: Differences in initial immunoprofiles between recurrent
and nonrecurrent chronic rhinosinusitis with nasal polyps. Am J
Rhinol Allergy. 28:192–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Calus L, Van Bruaene N, Bosteels C,
Dejonckheere S, Van Zele T, Holtappels G, Bachert C and Gevaert P:
Twelve-year follow-up study after endscopic sinus surgery in
patients with chronic rhinosinusitis with nasal polyposis. Clin
Transl Allergy. 9:302019. View Article : Google Scholar : PubMed/NCBI
|
8
|
DeConde AS, Mace JC, Levy JM, Rudmik L,
Alt JA and Smith TL: Prevalence of polyp recurrence after
endoscopic sinus surgery for chronic rhinosinusitis with nasal
polyposis. Laryngoscope. 127:550–555. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lin H, Li ZP, Lin D, Zheng CQ and Zhang
WT: Role of NLRP3 inflammasome in eosinophilic and non-eosinophilic
chronic rhinosinusitis with nasal polyps. Inflammation.
39:2045–205. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang YJ, Gong GQ, Chen S, Xiong LY, Zhou
XX, Huang X and Kong WJ: NLRP3 inflammasome sequential changes in
Staphylococcus aureus-induced mouse model of acute rhinosinusitis.
Int J Mol Sci. 15:15806–15820. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yazdi AS, Guarda G, Riteau N, Drexler SK,
Tardivel A, Couillin I and Tschopp J: Nanoparticles activate the
NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause
pulmonary inflammation through release of IL-1α and IL-1β. Proc
Natl Acad Sci USA. 107:19449–19454. 2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Okano M, Fujiwara T, Makihara S, Fujiwara
R, Higaki T, Kariya S, Noda Y, Haruna T and Nishizaki K:
Characterization of IL-18 expression and release in the
pathogenesis of chronic rhinosinusitis. Int Arch Allergy Immunol.
160:275–286. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Robbins GR, Wen H and Ting JP:
Inflammasomes and metabolic disorders: Old genes in modern
diseases. Mol Cell. 54:297–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Dostert C, Pétrilli V, Bruggen RV, Steele
C, Mossman BT and Tschopp J: Innate immune activation through Nalp3
inflammasome sensing of asbestos and silica. Science. 320:674–677.
2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Qu Y, Franchi L, Nunez G and Dubyak GR:
Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is
dependent on inflammasome activation and correlated with exosome
release in murine macrophages. J Immunol. 179:1913–1925. 2007.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim CH, Kim SS, Choi JY, Shin JH, Kim JY,
Namkung W, Lee JG, Lee MG and Yoon JH: Membrane-specific expression
of functional purinergic receptors in normal human nasal epithelial
cells. Am J Physiol Lung Cell Mol Physiol. 287:L835–L842. 2004.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Di Virgilio F: Liaisons dangereuses:
P2X(7) and the inflammasome. Trends Pharmacol Sci. 28:465–472.
2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liao B, Cao PP, Zeng M, Zhen Z, Wang H,
Zhang YN, Hu CY, Ma J, Li ZY, Song J, et al: Interaction of thymic
stromal lymphopoietin, IL-33, and their receptors in epithelial
cells in eosinophilic chronic rhinosinusitis with nasal polyps.
Allergy. 70:1169–1180. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wang WQ, Gao YL, Zhu ZZ, Zha Y, Wang XW,
Qi F, Zhou LG, Pang JY, Gao ZQ and Lv W: Changes in the clinical
and histological characteristics of Chinese chronic rhinosinusitis
with nasal polyps over 11 years. Int Forum Allergy Rhinol.
9:149–157. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang ET, Zheng Y, Liu PF and Guo LJ:
Eosinophilic chronic rhinosinusitis in East Asians. World J Clin
Cases. 2:873–882. 2014. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lohman AW, Billaud M and Isakson BE:
Mechanisms of ATP release and signalling in the blood vessel wall.
Cardiovasc Res. 95:269–280. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kato T, Kouzaki H, Matsumoto K, Hosoi J
and Shimizu T: The effect of calprotectin on TSLP and IL-25
production from airway epithelial cells. Allergol Int. 66:281–289.
2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Paris G, Pozharskaya T, Asempa T and Lane
AP: Damage-associated molecular patterns stimulate interleukin-33
expression in nasal polyp epithelial cells. Int Forum Allergy
Rhinol. 4:15–21. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Cauwels A, Rogge E, Vandendriessche B,
Shiva S and Brouckaert P: Extracellular ATP drives systemic
inflammation, tissue damage and mortality. Cell Death Dis.
5:e11022014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang ZC, Yao Y, Wang N, Liu JX, Ma J, Chen
CL, Deng YK, Wang MC, Liu Y, Zhang XH and Liu Z: Deficiency in
interleukin-10 production by M2 macrophages in eosinophilic chronic
rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol.
8:1323–1333. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Weigt SS, Palchevskiy V and Belperio JA:
Inflammasomes and IL-1 biology in the pathogenesis of allograft
dysfunction. J Clin Inves. 127:2022–2029. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Nelson DW, Gregg RJ, Kort ME,
Perez-Medrano A, Voight EA, Wang Y, Grayson G, Namovic MT,
Donnelly-Roberts DL, Niforatos W, et al: Structure-activity
relationship studies on a series of novel, substituted
1-benzyl-5-phenyltetrazole P2X7 antagonists. J Med Chem.
49:3659–3666. 2006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Donnelly-Roberts DL and Jarvis MF:
Discovery of P2X7 receptor-selective antagonists offers new
insights into P2X7 receptor function and indicates a role in
chronic pain states. Br J Pharmacol. 151:571–579. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Feng YH, Wang LQ, Wang QF, Li X, Zeng RB
and Gorodeski GI: ATP stimulates GRK-3 phosphorylation and
beta-arrestin-2-dependent internalization of P2X7 receptor. Am J
Physiol Cell Physiol. 288:C1342–C1356. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Stevens WW, Schleimer RP and Kern RC:
Chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol
Pract. 4:565–572. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gallucci S and Matzinger P: Danger
signals: SOS to the immune system. Curr Opin Immunol. 13:114–119.
2001. View Article : Google Scholar : PubMed/NCBI
|
33
|
Heffler E, Malvezzi L, Boita M, Brussino
L, De Virgilio A, Ferrando M, Puggioni F, Racca F, Stomeo N,
Spriano G and Canonica GW: Immunological mechanisms underlying
chronic rhinosinusitis with nasal polyps. Expert Rev Clin Immunol.
14:731–737. 2018. View Article : Google Scholar : PubMed/NCBI
|