1
|
Meredith TJ and Vale JA: Treatment of
paraquat poisoning in man: Methods to prevent absorption. Hum
Toxicol. 6:49–55. 1987. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gil HW, Hong JR, Jang SH and Hong SY:
Diagnostic and therapeutic approach for acute paraquat
intoxication. J Korean Med Sci. 29:1441–1449. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eddleston M: Patterns and problems of
deliberate self-poisoning in the developing world. QJM. 93:715–731.
2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Dinis-Oliveira RJ, Duarte JA,
Sanchez-Navarro A, Remiao F, Bastos ML and Carvalho F: Paraquat
poisonings: Mechanisms of lung toxicity, clinical features, and
treatment. Crit Rev Toxicol. 38:13–71. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Li Y, Wang N, Ma Z, Wang Y, Yuan Y, Zhong
Z, Hong Y and Zhao M: Lipoxin A4 protects against paraquat-induced
acute lung injury by inhibiting the TLR4/MyD88-mediated activation
of the NF-κB and PI3K/AKT pathways. Int J Mol Med. 47:862021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Amin F, Roohbakhsh A, Memarzia A, Kazerani
HR and Boskabady MH: Immediate and late systemic and lung effects
of inhaled paraquat in rats. J Hazard Mater. 415:1256332021.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Yoon SC: Clinical outcome of paraquat
poisoning. Korean J Intern Med. 24:93–94. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Gonzalez DM and Medici D: Signaling
mechanisms of the epithelial-mesenchymal transition. Sci Signal.
7:re82014. View Article : Google Scholar : PubMed/NCBI
|
9
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Nawshad A, Lagamba D, Polad A and Hay ED:
Transforming growth factor-beta signaling during
epithelial-mesenchymal transformation: Implications for
embryogenesis and tumor metastasis. Cells Tissues Organs.
179:11–23. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kalluri R and Weinberg RA: The basics of
epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428.
2009. View
Article : Google Scholar : PubMed/NCBI
|
12
|
Ohbayashi M, Kubota S, Kawase A, Kohyama
N, Kobayashi Y and Yamamoto T: Involvement of
epithelial-mesenchymal transition in methotrexate-induced pulmonary
fibrosis. J Toxicol Sci. 39:319–330. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xie H, Tan JT, Wang RL, Meng XX, Tang X
and Gao S: Expression and significance of HIF-1α in pulmonary
fibrosis induced by paraquat. Exp Biol Med (Maywood).
238:1062–1068. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhu Y, Tan J, Xie H, Wang J, Meng X and
Wang R: HIF-1α regulates EMT via the Snail and β-catenin pathways
in paraquat poisoning-induced early pulmonary fibrosis. J Cell Mol
Med. 20:688–697. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhu H and Zhou H: Novel Insight into the
role of endoplasmic reticulum stress in the pathogenesis of
myocardial ischemia-reperfusion injury. Oxid Med Cell Longev.
2021:55298102021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Magallón M, Carrión AE, Bañuls L, Pellicer
D, Castillo S, Bondía S, Navarro-García MM, González C and Dasí F:
Oxidative stress and endoplasmic reticulum stress in rare
respiratory diseases. J Clin Med. 10:12682021. View Article : Google Scholar
|
17
|
Hayashi T, Saito A, Okuno S, Ferrand-Drake
M, Dodd RL, Nishi T, Maier CM, Kinouchi H and Chan PH: Oxidative
damage to the endoplasmic reticulum is implicated in ischemic
neuronal cell death. J Cereb Blood Flow Metab. 23:1117–1128. 2003.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Laybutt DR, Preston AM, Akerfeldt MC,
Kench JG, Busch AK, Biankin AV and Biden TJ: Endoplasmic reticulum
stress contributes to beta cell apoptosis in type 2 diabetes.
Diabetologia. 50:752–763. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Tanjore H, Blackwell TS and Lawson WE:
Emerging evidence for endoplasmic reticulum stress in the
pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung
Cell Mol Physiol. 302:L721–L729. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Feng YX, Sokol ES, Del Vecchio CA, Sanduja
S, Claessen JH, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q
and Gupta PB: Epithelial-to-mesenchymal transition activates
PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress.
Cancer Discov. 4:702–715. 2014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Burman A, Tanjore H and Blackwell TS:
Endoplasmic reticulum stress in pulmonary fibrosis. Matrix Biol.
68-69:355–365. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Marciniak SJ: Endoplasmic reticulum stress
in lung disease. Eur Respir Rev. 26:1700182017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tanjore H, Cheng DS, Degryse AL, Zoz DF,
Abdolrasulnia R, Lawson WE and Blackwell TS: Alveolar epithelial
cells undergo epithelial-to-mesenchymal transition in response to
endoplasmic reticulum stress. J Biol Chem. 290:32772015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Meng XX, Liu K, Tan JT, Xie H and Wang RL:
The relationship of endoplasmic reticulum stress with paraquat
induced lung fibrosis in rats. Zhonghua Wei Zhong Bing Ji Jiu Yi
Xue. 25:331–334. 2013.(In Chinese). PubMed/NCBI
|
25
|
Omura T, Asari M, Yamamoto J, Oka K,
Hoshina C, Maseda C, Awaya T, Tasaki Y, Shiono H, Yonezawa A, et
al: Sodium tauroursodeoxycholate prevents paraquat-induced cell
death by suppressing endoplasmic reticulum stress responses in
human lung epithelial A549 cells. Biochem Biophys Res Commun.
432:689–694. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang D, Liu Z, Yan Z, Liang X, Liu X, Liu
Y, Wang P, Bai C, Gu Y and Zhou PK: MiRNA-155-5p inhibits
epithelium-to-mesenchymal transition (EMT) by targeting GSK-3β
during radiation-induced pulmonary fibrosis. Arch Biochem Biophys.
697:1086992021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zheng H, Yang Z, Xin Z, Yang Y, Yu Y, Cui
J, Liu H and Chen F: Glycogen synthase kinase-3β: A promising
candidate in the fight against fibrosis. Theranostics.
10:11737–11753. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shih JY and Yang PC: The EMT regulator
slug and lung carcinogenesis. Carcinogenesis. 32:1299–304. 2011.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Bergmann C, Akhmetshina A, Dees C, Palumbo
K, Zerr P, Beyer C, Zwerina J, Distler O, Schett G and Distler JH:
Inhibition of glycogen synthase kinase 3β induces dermal fibrosis
by activation of the canonical Wnt pathway. Ann Rheum Dis.
70:2191–2198. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Peinado H, Portillo F and Cano A:
Switching on-off Snail: LOXL2 versus GSK3beta. Cell Cycle.
4:1749–1752. 2005. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhou BP, Deng J, Xia W, Xu J, Li YM,
Gunduz M and Hung MC: Dual regulation of Snail by
GSK-3beta-mediated phosphorylation in control of
epithelial-mesenchymal transition. Nat Cell Biol. 6:931–940. 2004.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Wang J, Zhu Y, Tan J, Meng X, Xie H and
Wang R: Lysyl oxidase promotes epithelial-to-mesenchymal transition
during paraquat-induced pulmonary fibrosis. Mol Biosyst.
12:499–507. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang Q, Wen L, Meng Z and Chen Y: Blockage
of endoplasmic reticulum stress attenuates nilotinib-induced
cardiotoxicity by inhibition of the Akt-GSK3β-Nox4 signaling. Eur J
Pharmacol. 822:85–94. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Foster KA, Oster CG, Mayer MM, Avery ML
and Audus KL: Characterization of the A549 cell line as a type II
pulmonary epithelial cell model for drug metabolism. Exp Cell Res.
243:359–366. 1998. View Article : Google Scholar : PubMed/NCBI
|
35
|
Uhal BD, Dang M, Dang V, Llatos R, Cano E,
Abdul-Hafez A, Markey J, Piasecki CC and Molina-Molina M: Cell
cycle dependence of ACE-2 explains downregulation in idiopathic
pulmonary fibrosis. Eur Respir J. 42:198–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Jung JK, Jung HI, Neupane S, Kim KR and
Kim JY, Yamamoto H, Cho SW, Lee Y, Shin HI, Sohn WJ and Kim JY:
Involvement of PI3K and PKA pathways in mouse tongue epithelial
differentiation. Acta Histochem. 119:92–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kumari N, Reabroi S and North BJ:
Unraveling the molecular Nexus between GPCRs, ERS, and EMT.
Mediators Inflamm. 2021:66554172021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang Y, Sun Y, Fu Y, Guo X, Long J, Xuan
LY, Wei CX and Zhao M: Calumenin relieves cardiac injury by
inhibiting ERS-initiated apoptosis during viral myocarditis. Int J
Clin Exp Pathol. 10:7277–7284. 2017.PubMed/NCBI
|
40
|
Zhong Q, Zhou B, Ann DK, Minoo P, Liu Y,
Banfalvi A, Krishnaveni MS, Dubourd M, Demaio L, Willis BC, et al:
Role of endoplasmic reticulum stress in epithelial-mesenchymal
transition of alveolar epithelial cells: Effects of misfolded
surfactant protein. Am J Respir Cell Mol Biol. 45:498–509. 2011.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Li CY, Wang Q, Shen S, Wei XL and Li GX:
Oridonin inhibits migration, invasion, adhesion and TGF-β1-induced
epithelial-mesenchymal transition of melanoma cells by inhibiting
the activity of PI3K/Akt/GSK-3β signaling pathway. Oncol Lett.
15:1362–1372. 2018.PubMed/NCBI
|
42
|
Sittipunt C: Paraquat poisoning. Respir
Care. 50:383–385. 2005.PubMed/NCBI
|
43
|
Chapman HA: Epithelial-mesenchymal
interactions in pulmonary fibrosis. Annu Rev Physiol. 73:413–435.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zavadil J and Bottinger EP: TGF-β and
epithelial-to-mesenchymal transitions. Oncogene. 24:5764–5774.
2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Hashimoto N, Phan SH, Imaizumi K, Matsuo
M, Nakashima H, Kawabe T, Shimokata K and Hasegawa Y:
Endothelial-mesenchymal transition in bleomycin-induced pulmonary
fibrosis. Am J Respir Cell Mol Biol. 43:161–172. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Guarino M, Tosoni A and Nebuloni M: Direct
contribution of epithelium to organ fibrosis:
Epithelial-mesenchymal transition. Hum Pathol. 40:1365–1376. 2009.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Phillips BP and Miller EA: Membrane
protein folding and quality control. Curr Opin Struct Biol.
69:50–54. 2021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Selimovic D, Ahmad M, El-Khattouti A,
Hannig M, Haikel Y and Hassan M: Apoptosis-related protein-2
triggers melanoma cell death by a mechanism including both
endoplasmic reticulum stress and mitochondrial dysregulation.
Carcinogenesis. 32:1268–1278. 2011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen YW, Yang YT, Hung DZ, Su CC and Chen
KL: Paraquat induces lung alveolar epithelial cell apoptosis via
Nrf-2-regulated mitochondrial dysfunction and ER stress. Arch
Toxicol. 86:1547–1558. 2012. View Article : Google Scholar : PubMed/NCBI
|
50
|
Song CQ, Sun DZ, Xu YM, Yang C, Cai Q and
Dong XS: Effect of endoplasmic reticulum calcium on
paraquat-induced apoptosis of human lung type II alveolar
epithelial A549 cells. Mol Med Rep. 20:2419–2425. 2019.PubMed/NCBI
|
51
|
Xu Y, Sun D, Song C, Wang R and Dong X:
MnTMPyP inhibits paraquat-induced pulmonary epithelial-like cell
injury by inhibiting oxidative stress. J Toxicol Sci. 43:545–555.
2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yamashita M, Yamashita M and Ando Y: A
long-term follow-up of lung function in survivors of paraquat
poisoning. Hum Exp Toxicol. 19:99–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
53
|
Malhotra JD, Miao H, Zhang K, Wolfson A,
Pennathur S, Pipe SW and Kaufman RJ: Antioxidants reduce
endoplasmic reticulum stress and improve protein secretion. Proc
Natl Acad Sci USA. 105:18525–18530. 2008. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lewen A, Matz P and Chan PH: Free radical
pathways in CNS injury. J Neurotrauma. 17:871–890. 2000. View Article : Google Scholar : PubMed/NCBI
|
55
|
Davies PF and Civelek M: Endoplasmic
reticulum stress, redox, and a proinflammatory environment in
athero-susceptible endothelium in vivo at sites of complex
hemodynamic shear stress. Antioxid Redox Signal. 15:1427–1432.
2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Bagnato A and Rosanò L:
Epithelial-mesenchymal transition in ovarian cancer progression: A
crucial role for the endothelin axis. Cells Tissues Organs.
185:85–94. 2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Lamouille S and Derynck R: Emergence of
the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin
axis in transforming growth factor-β-induced epithelial-mesenchymal
transition. Cells Tissues Organs. 193:8–22. 2011. View Article : Google Scholar : PubMed/NCBI
|