1
|
Barooti A, Kamran M, Kharazmi F, Eftakhar
E, Malekzadeh K, Talebi A and Soltani N: Effect of oral magnesium
sulfate administration on blood glucose hemostasis via inhibition
of gluconeogenesis and FOXO1 gene expression in liver and muscle in
diabetic rats. Biomed Pharmacother. 109:1819–1825. 2019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Perry BD, Caldow MK, Brennan-Speranza TC,
Sbaraglia M, Jerums G, Garnham A, Wong C, Levinger P, Asrar Ul Haq
M, Hare DL, et al: Muscle atrophy in patients with type 2 diabetes
mellitus: Roles of inflammatory pathways, physical activity and
exercise. Exerc Immunol Rev. 22:94–109. 2016.PubMed/NCBI
|
3
|
Papatheodorou K, Banach M, Bekiari E,
Rizzo M and Edmonds M: Complications of diabetes 2017. J Diabetes
Res. 2018:30861672018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tsai TH, Lin CJ, Chua S, Chung SY, Chen
SM, Lee CH and Hang CL: Deletion of RasGRF1 attenuated interstitial
fibrosis in streptozotocin-induced diabetic cardiomyopathy in mice
through affecting inflammation and oxidative stress. Int J Mol Sci.
19:30942018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lam CS: Diabetic cardiomyopathy: An
expression of stage B heart failure with preserved ejection
fraction. Diab Vasc Dis Res. 12:234–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dai B, Li H, Fan J, Zhao Y, Yin Z, Nie X,
Wang DW and Chen C: MiR-21 protected against diabetic
cardiomyopathy induced diastolic dysfunction by targeting gelsolin.
Cardiovasc Diabetol. 17:1232018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ni R, Cao T, Xiong S, Ma J, Fan GC,
Lacefield JC, Lu Y, Le Tissier S and Peng T: Therapeutic inhibition
of mitochondrial reactive oxygen species with mito-TEMPO reduces
diabetic cardiomyopathy. Free Radic Biol Med. 90:12–23. 2016.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Luo W, Jin Y, Wu G, Zhu W, Qian Y, Zhang
Y, Li J, Zhu A and Liang G: Blockage of ROS and MAPKs-mediated
inflammation via restoring SIRT1 by a new compound LF10 prevents
type 1 diabetic cardiomyopathy. Toxicol Appl Pharmacol. 370:24–35.
2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kayama Y, Raaz U, Jagger A, Adam M,
Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM and Tsao
PS: Diabetic cardiovascular disease induced by oxidative stress.
Int J Mol Sci. 16:25234–25263. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang J, Song Y, Elsherif L, Song Z, Zhou
G, Prabhu SD, Saari JT and Cai L: Cardiac metallothionein induction
plays the major role in the prevention of diabetic cardiomyopathy
by zinc supplementation. Circulation. 113:544–554. 2006. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wu MS, Liang JT, Lin YD, Wu ET, Tseng YZ
and Chang KC: Aminoguanidine prevents the impairment of cardiac
pumping mechanics in rats with streptozotocin and
nicotinamide-induced type 2 diabetes. Br J Pharmacol. 154:758–764.
2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lu J, Pontré B, Pickup S, Choong SY, Li M,
Xu H, Gamble GD, Phillips AR, Cowan BR, Young AA and Cooper GJ:
Treatment with a copper-selective chelator causes substantive
improvement in cardiac function of diabetic rats with
left-ventricular impairment. Cardiovasc Diabetol. 12:282013.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Forcheron F, Basset A, Abdallah P, Del
Carmine P, Gadot N and Beylot M: Diabetic cardiomyopathy: Effects
of fenofibrate and metformin in an experimental model-the Zucker
diabetic rat. Cardiovasc Diabetol. 8:162009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xie Z, Lau K, Eby B, Lozano P, He C,
Pennington B, Li H, Rathi S, Dong Y, Tian R, et al: Improvement of
cardiac functions by chronic metformin treatment is associated with
enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes.
60:1770–1778. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rösen R, Rump AF and Rösen P: The
ACE-inhibitor captopril improves myocardial perfusion in
spontaneously diabetic (BB) rats. Diabetologia. 38:509–517. 1995.
View Article : Google Scholar
|
16
|
Al-Shafei AI, Wise RG, Gresham GA, Bronns
G, Carpenter TA, Hall LD and Huang CL: Non-invasive magnetic
resonance imaging assessment of myocardial changes and the effects
of angiotensin-converting enzyme inhibition in diabetic rats. J
Physiol. 538:541–553. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Turan B: A comparative summary on
antioxidant-like actions of timolol with other antioxidants in
diabetic cardiomyopathy. Curr Drug Deliv. 13:418–423. 2016.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Savarese G, D'Amore C, Federici M, De
Martino F, Dellegrottaglie S, Marciano C, Ferrazzano F, Losco T,
Lund LH, Trimarco B, et al: Effects of dipeptidyl peptidase 4
inhibitors and sodium-glucose linked coTransporter-2 inhibitors on
cardiovascular events in patients with type 2 diabetes mellitus: A
meta-analysis. Int J Cardiol. 220:595–601. 2016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Suzuki T and Yamamoto M: Molecular basis
of the Keap1-Nrf2 system. Free Radic Biol Med. 88:93–100. 2015.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ge ZD, Lian Q, Mao X and Xia Z: Current
status and challenges of NRF2 as a potential therapeutic target for
diabetic cardiomyopathy. Int Heart J. 60:512–520. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Luo J, Yan D, Li S, Liu S, Zeng F, Cheung
CW, Liu H, Irwin MG, Huang H and Xia Z: Allopurinol reduces
oxidative stress and activates Nrf2/p62 to attenuate diabetic
cardiomyopathy in rats. J Cell Mol Med. 24:1760–1773. 2020.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Deng X, Xing X, Sun G, Xu X, Wu H, Li G
and Sun X: Guanxin danshen formulation protects against myocardial
ischemia reperfusion injury-induced left ventricular remodeling by
upregulating estrogen receptor β. Front Pharmacol. 8:7772017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Li J, Han L, Zhu, Wang D and Shang Z:
Guanxin Danshen Pills in Treatment of 200 Cases of Patients with
Coronary Heart Disease Angina Pectoris. China &Foreign Medical
Treatment. 24:126–128. 2017.
|
24
|
Yu Y, Sun G, Luo Y, Wang M, Chen R, Zhang
J, Ai Q, Xing N and Sun X: Cardioprotective effects of
Notoginsenoside R1 against ischemia/reperfusion injuries by
regulating oxidative stress- and endoplasmic reticulum stress-
related signaling pathways. Sci Rep. 6:217302016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xiao J, Zhu T, Yin YZ and Sun B:
Notoginsenoside R1, a unique constituent of Panax
notoginseng, blinds proinflammatory monocytes to protect
against cardiac hypertrophy in ApoE−/− mice. Eur J
Pharmacol. 833:441–450. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fan C, Qiao Y and Tang M: Notoginsenoside
R1 attenuates high glucose-induced endothelial damage in rat
retinal capillary endothelial cells by modulating the intracellular
redox state. Drug Des Devel Ther. 11:3343–3354. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yu LJ, Zhang KJ, Zhu JZ, Zheng Q, Bao XY,
Thapa S, Wang Y and Chu MP: Salvianolic acid exerts
cardioprotection through promoting angiogenesis in animal models of
acute myocardial infarction: Preclinical evidence. Oxid Med Cell
Longev. 2017:81923832017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yu H, Zhen J, Yang Y, Gu J, Wu S and Liu
Q: Ginsenoside Rg1 ameliorates diabetic cardiomyopathy by
inhibiting endoplasmic reticulum stress-induced apoptosis in a
streptozotocin-induced diabetes rat model. J Cell Mol Med.
20:623–631. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Paolillo S, Marsico F, Prastaro M, Renga
F, Esposito L, De Martino F, Di Napoli P, Esposito I, Ambrosio A,
Ianniruberto M, et al: Diabetic cardiomyopathy: Definition,
diagnosis, and therapeutic implications. Heart Fail Clin.
15:341–347. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
National Research Council (US) Institute
for Laboratory Animal Research, . Guide for the Care and Use of
Laboratory Animals. National Academies Press; Washington, DC:
1996
|
31
|
Xie W, Meng X, Zhai Y, Ye T, Zhou P, Nan
F, Sun G and Sun X: Antidepressant-like effects of the Guanxin
Danshen formula via mediation of the CaMK II-CREB-BDNF signalling
pathway in chronic unpredictable mild stress-induced depressive
rats. Ann Transl Med. 7:5642019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Shan T, Liang X, Bi P and Kuang S:
Myostatin knockout drives browning of white adipose tissue through
activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J.
27:1981–1989. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang C, Wang F, Zhang Y, Kang Y, Wang H,
Si M, Su L, Xin X, Xue F, Hao F, et al: Celecoxib prevents pressure
overload-induced cardiac hypertrophy and dysfunction by inhibiting
inflammation, apoptosis and oxidative stress. J Cell Mol Med.
20:116–127. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chai C, Song LJ, Han SY, Li XQ and Li M:
MicroRNA-21 promotes glioma cell proliferation and inhibits
senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT
signaling pathway. CNS Neurosci Ther. 24:369–380. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang S, Zhang T, Yang Z, Lin J, Cai B, Ke
Q, Lan W, Shi J, Wu S and Lin W: Heme oxygenase-1 protects spinal
cord neurons from hydrogen peroxide-induced apoptosis via
suppression of Cdc42/MLK3/MKK7/JNK3 signaling. Apoptosis.
22:449–462. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huynh K, Bernardo BC, McMullen JR and
Ritchie RH: Diabetic cardiomyopathy: Mechanisms and new treatment
strategies targeting antioxidant signaling pathways. Pharmacol
Ther. 142:375–415. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boudina S, Bugger H, Sena S, O'Neill BT,
Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Palfreyman E, Tidwell TJ,
et al: Contribution of impaired myocardial insulin signaling to
mitochondrial dysfunction and oxidative stress in the heart.
Circulation. 119:1272–1283. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
Dludla PV, Joubert E, Muller CJF, Louw J
and Johnson R: Hyperglycemia-induced oxidative stress and heart
disease-cardioprotective effects of rooibos flavonoids and
phenylpyruvic acid-2-O-β-D-glucoside. Nutr Metab (Lond). 14:452017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Gencoglu H, Tuzcu M, Hayirli A and Sahin
K: Protective effects of resveratrol against streptozotocin-induced
diabetes in rats by modulation of visfatin/sirtuin-1 pathway and
glucose transporters. Int J Food Sci Nutr. 66:314–320. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhu R, Sun H, Yu K, Zhong Y, Shi H, Wei Y,
Su X, Xu W, Luo Q, Zhang F, et al: Interleukin-37 and dendritic
cells treated with interleukin-37 plus troponin I ameliorate
cardiac remodeling after myocardial infarction. J Am Heart Assoc.
5:e0044062016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang WX, He BM, Wu Y, Qiao JF and Peng
ZY: Melatonin protects against sepsis-induced cardiac dysfunction
by regulating apoptosis and autophagy via activation of SIRT1 in
mice. Life Sci. 217:8–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yamada S, Ding Y, Tanimoto A, Wang KY, Guo
X, Li Z, Tasaki T, Nabesima A, Murata Y, Shimajiri S, et al:
Apoptosis signal-regulating kinase 1 deficiency accelerates
hyperlipidemia-induced atheromatous plaques via suppression of
macrophage apoptosis. Arterioscler Thromb Vasc Biol. 31:1555–1564.
2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Guo Y, Yin HJ and Shi DZ: Effect of xinnao
shutong capsule on cardiac muscle cell apoptosis and protein
expressions of Bcl-2 and Bax in hyperlipidemia rats after
myocardial infarction. Zhongguo Zhong Xi Yi Jie He Za Zhi.
26:541–544. 2006.(In Chinese). PubMed/NCBI
|
45
|
Wang Y, Xue J, Li Y, Zhou X, Qiao S and
Han D: Telmisartan protects against high glucose/high lipid-induced
apoptosis and insulin secretion by reducing the oxidative and ER
stress. Cell Biochem Funct. 37:161–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Giacco F and Brownlee M: Oxidative stress
and diabetic complications. Circ Res. 107:1058–1070. 2010.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Vásquez-Trincado C, García-Carvajal I,
Pennanen C, Parra V, Hill JA, Rothermel BA and Lavandero S:
Mitochondrial dynamics, mitophagy and cardiovascular disease. J
Physiol. 594:509–525. 2016. View Article : Google Scholar
|
48
|
Cheng L, Shen ZF, Sun GB and Sun XB:
Advances in diabetic animal models and its application in the
traditional Chinese medicine research. Yao Xue Xue Bao. 50:951–958.
2015.(In Chinese). PubMed/NCBI
|
49
|
Zhang X and Hao Y: Beneficial effects of
echinacoside on diabetic cardiomyopathy in diabetic Db/Db mice.
Drug Des Devel Ther. 14:5575–5587. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang S, Wang B, Wang Y, Tong Q, Liu Q, Sun
J, Zheng Y and Cai L: Zinc prevents the development of diabetic
cardiomyopathy in db/db Mice. Int J Mol Sci. 18:5802017. View Article : Google Scholar : PubMed/NCBI
|
51
|
Quan LH, Zhang C, Dong M, Jiang J, Xu H,
Yan C, Liu X, Zhou H, Zhang H, Chen L, et al: Myristoleic acid
produced by enterococci reduces obesity through brown adipose
tissue activation. Gut. 69:1239–1247. 2020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Xu Y, Wang N, Tan HY, Li S, Zhang C, Zhang
Z and Feng Y: Panax notoginseng saponins modulate the gut
microbiota to promote thermogenesis and beige adipocyte
reconstructionvia leptin-mediated AMPKα/STAT3 signaling in
diet-induced obesity. Theranostics. 10:11302–11323. 2020.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Tan PP, Zhou BH, Zhao WP, Jia LS, Liu J
and Wang HW: Mitochondria-mediated pathway regulates C2C12 cell
apoptosis induced by fluoride. Biol Trace Elem Res. 185:440–447.
2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lu Q and Hong W: Bcl2 enhances
c-Myc-mediated MMP-2 expression of vascular smooth muscle cells.
Cell Signal. 21:1054–1059. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang G, Zeng X, Zhang R, Liu J, Zhang W,
Zhao Y, Zhang X, Wu Z, Tan Y, Wu Y and Du B: Dioscin suppresses
hepatocellular carcinoma tumor growth by inducing apoptosis and
regulation of TP53, BAX, BCL2 and cleaved CASP3. Phytomedicine.
23:1329–1336. 2016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Birkinshaw RW and Czabotar PE: The BCL-2
family of proteins and mitochondrial outer membrane
permeabilisation. Semin Cell Dev Biol. 72:152–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Antonsson B and Martinou JC: The Bcl-2
protein family. Exp Cell Res. 256:50–57. 2000. View Article : Google Scholar : PubMed/NCBI
|
58
|
Matsui T and Rosenzweig A: Convergent
signal transduction pathways controlling cardiomyocyte survival and
function: The role of PI 3-kinase and akt. J Mol Cell Cardiol.
38:63–71. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P
and Cheng TH: Tanshinone IIA prevents doxorubicin-induced
cardiomyocyte apoptosis through Akt-dependent pathway. Int J
Cardiol. 157:174–179. 2012. View Article : Google Scholar : PubMed/NCBI
|
60
|
Su D, Zhou Y, Hu S, Guan L, Shi C, Wang Q,
Chen Y, Lu C, Li Q and Ma X: Role of GAB1/PI3K/AKT signaling high
glucose-induced cardiomyocyte apoptosis. Biomed Pharmacother.
93:1197–1204. 2017. View Article : Google Scholar : PubMed/NCBI
|
61
|
Zhang B, Chen Y, Shen Q, Liu G, Ye J, Sun
G and Sun X: Myricitrin attenuates high glucose-induced apoptosis
through activating Akt-Nrf2 signaling in H9c2 cardiomyocytes.
Molecules. 21:8802016. View Article : Google Scholar : PubMed/NCBI
|
62
|
Mahalanobish S, Saha S, Dutta S and Sil
PC: Mangiferin alleviates arsenic induced oxidative lung injury via
upregulation of the Nrf2-HO1 axis. Food Chem Toxicol. 126:41–55.
2019. View Article : Google Scholar : PubMed/NCBI
|
63
|
Unnikrishnan R, Anjana RM and Mohan V:
Diabetes mellitus and its complications in India. Nat Rev
Endocrinol. 12:357–370. 2016. View Article : Google Scholar : PubMed/NCBI
|
64
|
Athithan L, Gulsin GS, McCann GP and
Levelt E: Diabetic cardiomyopathy: Pathophysiology, theories and
evidence to date. World J Diabetes. 10:490–510. 2019. View Article : Google Scholar : PubMed/NCBI
|
65
|
Hu X, Bai T, Xu Z, Liu Q, Zheng Y and Cai
L: Pathophysiological fundamentals of diabetic cardiomyopathy.
Compr Physiol. 7:693–711. 2017. View Article : Google Scholar : PubMed/NCBI
|