1
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han
B, Bai Y, Zhang H and Yao H: Activation of Sigma-1 receptor
enhanced pericyte survival via the interplay between apoptosis and
autophagy: Implications for blood-brain barrier integrity in
stroke. Transl Stroke Res. 11:267–287. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Z, Cho S, Rehni AK, Quero HN, Dave
KR and Zhao W: Automated assessment of hematoma volume of rodents
subjected to experimental intracerebral hemorrhagic stroke by bayes
segmentation approach. Transl Stroke Res. 11:789–798. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Gross BA, Jankowitz BT and Friedlander RM:
Cerebral intraparenchymal hemorrhage: A Review. JAMA.
321:1295–1303. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wu X, Luo J, Liu H, Cui W, Guo K, Zhao L,
Bai H, Guo W, Guo H, Feng D and Qu Y: Recombinant adiponectin
peptide ameliorates brain injury following intracerebral hemorrhage
by suppressing astrocyte-derived inflammation via the inhibition of
Drp1-mediated mitochondrial fission. Transl Stroke Res. 11:924–939.
2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hanley DF, Thompson RE, Rosenblum M,
Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D,
Mould WA, et al: Efficacy and safety of minimally invasive surgery
with thrombolysis in intracerebral haemorrhage evacuation (MISTIE
III): A randomised, controlled, open-label, blinded endpoint phase
3 trial. Lancet. 393:1021–1032. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen J, Wang Y, Wu J, Yang J, Li M and
Chen Q: The potential value of targeting ferroptosis in early brain
injury after acute CNS disease. Front Mol Neurosci. 13:1102020.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Adeoye O and Broderick JP: Advances in the
management of intracerebral hemorrhage. Nat Rev Neurol. 6:593–601.
2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mendelow AD, Gregson BA, Rowan EN, Murray
GD, Gholkar A and Mitchell PM: Early surgery versus initial
conservative treatment in patients with spontaneous supratentorial
lobar intracerebral haematomas (STICH II): A randomised trial.
Lancet. 382:397–408. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou Y, Wang Y, Wang J, Anne Stetler R and
Yang QW: Inflammation in intracerebral hemorrhage: From mechanisms
to clinical translation. Prog Neurobiol. 115:25–44. 2014.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Xue M and Yong VW: Neuroinflammation in
intracerebral haemorrhage: Immunotherapies with potential for
translation. Lancet Neurol. 19:1023–1032. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Chen JH, Yang LK, Chen L, Wang YH, Wu Y,
Jiang BJ, Zhu J and Li PP: Atorvastatin ameliorates early brain
injury after subarachnoid hemorrhage via inhibition of AQP4
expression in rabbits. Int J Mol Med. 37:1059–1066. 2016.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Bao WD, Zhou XT, Zhou LT, Wang F, Yin X,
Lu Y, Zhu LQ and Liu D: Targeting miR-124/Ferroportin signaling
ameliorated neuronal cell death through inhibiting apoptosis and
ferroptosis in aged intracerebral hemorrhage murine model. Aging
Cell. 19:e132352020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Gautam J, Xu L, Nirwane A, Nguyen B and
Yao Y: Loss of mural cell-derived laminin aggravates hemorrhagic
brain injury. J Neuroinflammation. 17:1032020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Karuppagounder SS, Alim I, Khim SJ,
Bourassa MW, Sleiman SF, John R, Thinnes CC, Yeh TL, Demetriades M,
Neitemeier S, et al: Therapeutic targeting of oxygen-sensing prolyl
hydroxylases abrogates ATF4-dependent neuronal death and improves
outcomes after brain hemorrhage in several rodent models. Sci
Transl Med. 8:328ra3292016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen J, Zhang C, Yan T, Yang L, Wang Y,
Shi Z, Li M and Chen Q: Atorvastatin ameliorates early brain injury
after subarachnoid hemorrhage via inhibition of pyroptosis and
neuroinflammation. J Cell Physiol. Mar 31–2021.(Epub ahead of
print). doi: 10.1002/jcp.30351. View Article : Google Scholar
|
16
|
Wang T, Nowrangi D, Yu L, Lu T, Tang J,
Han B, Ding Y, Fu F and Zhang JH: Activation of dopamine D1
receptor decreased NLRP3-mediated inflammation in intracerebral
hemorrhage mice. J Neuroinflammation. 15:22018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W,
Wang W, Yin H, Hao Q, Zhou C, et al: NOD1/RIP2 signalling enhances
the microglia-driven inflammatory response and undergoes crosstalk
with inflammatory cytokines to exacerbate brain damage following
intracerebral haemorrhage in mice. J Neuroinflammation. 17:3642020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen S, Peng J, Sherchan P, Ma Y, Xiang S,
Yan F, Zhao H, Jiang Y, Wang N, Zhang JH and Zhang H: TREM2
activation attenuates neuroinflammation and neuronal apoptosis via
PI3K/Akt pathway after intracerebral hemorrhage in mice. J
Neuroinflammation. 17:1682020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF,
Mao L, Xia YP, Jin HJ, Li YN, You MF, et al: Microglia-derived
TNF-α mediates endothelial necroptosis aggravating blood
brain-barrier disruption after ischemic stroke. Cell Death Dis.
10:4872019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chu X, Wu X, Feng H, Zhao H, Tan Y, Wang
L, Ran H, Yi L, Peng Y, Tong H, et al: Coupling between
Interleukin-1R1 and necrosome complex involves in hemin-induced
neuronal necroptosis after intracranial hemorrhage. Stroke.
49:2473–2482. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Su X, Wang H, Kang D, Zhu J, Sun Q, Li T
and Ding K: Necrostatin-1 ameliorates intracerebral
hemorrhage-induced brain injury in mice through inhibiting
RIP1/RIP3 pathway. Neurochem Res. 40:643–650. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lule S, Wu L, Sarro-Schwartz A, Edmiston
Iii WJ, Izzy S, Songtachalert T, Ahn SH, Fernandes ND, Jin G, Chung
JY, et al: Cell-specific activation of RIPK1 and MLKL after
intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. Nov
19–2020.(Epub ahead of print). doi: 10.1177/0271678X20973609.
PubMed/NCBI
|
23
|
Weiping L, Dong Z, Zhen H, Patten A, Dash
A and Malhotra M: Efficacy, safety, and tolerability of adjunctive
perampanel in patients from China with focal seizures or
generalized tonic-clonic seizures: Post hoc analysis of phase III
double-blind and open-label extension studies. CNS Neurosci Ther.
27:330–340. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen T, Liu WB, Qian X, Xie KL and Wang
YH: The AMPAR antagonist perampanel protects the neurovascular unit
against traumatic injury via regulating Sirt3. CNS Neurosci Ther.
27:134–144. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Dohare P, Zia MT, Ahmed E, Ahmed A, Yadala
V, Schober AL, Ortega JA, Kayton R, Ungvari Z, Mongin AA and
Ballabh P: AMPA-kainate receptor inhibition promotes neurologic
recovery in premature rabbits with intraventricular hemorrhage. J
Neurosci. 36:3363–3377. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wright SK, Wilson MA, Walsh R, Lo WB,
Mundil N, Agrawal S, Philip S, Seri S, Greenhill SD and Woodhall
GL: Abolishing spontaneous epileptiform activity in human brain
tissue through AMPA receptor inhibition. Ann Clin Transl Neurol.
7:883–890. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen T, Dai SH, Jiang ZQ, Luo P, Jiang XF,
Fei Z, Gui SB and Qi YL: The AMPAR antagonist perampanel attenuates
traumatic brain injury through anti-oxidative and anti-inflammatory
activity. Cell Mol Neurobiol. 37:43–52. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen T, Yang LK, Zhu J, Hang CH and Wang
YH: The AMPAR antagonist perampanel regulates neuronal necroptosis
via Akt/GSK3β signaling after acute traumatic injury in cortical
neurons. CNS Neurol Disord Drug Targets. Oct 1–2020.(Epub ahead of
print). doi: 10.2174/1871527319666201001110937. View Article : Google Scholar
|
29
|
Wang L, Wang L, Shi X and Xu S:
Chlorpyrifos induces the apoptosis and necroptosis of L8824 cells
through the ROS/PTEN/PI3K/AKT axis. J Hazard Mater. 398:1229052020.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Guido C, Panza S, Santoro M, Avena P,
Panno ML, Perrotta I, Giordano F, Casaburi I, Catalano S, De Amicis
F, et al: Estrogen receptor beta (ERβ) produces autophagy and
necroptosis in human seminoma cell line through the binding of the
Sp1 on the phosphatase and tensin homolog deleted from chromosome
10 (PTEN) promoter gene. Cell Cycle. 11:2911–2921. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gao X, Xiong Y, Li Q, Han M, Shan D, Yang
G, Zhang S, Xin D, Zhao R, Wang Z, et al: Extracellular
vesicle-mediated transfer of miR-21-5p from mesenchymal stromal
cells to neurons alleviates early brain injury to improve cognitive
function via the PTEN/Akt pathway after subarachnoid hemorrhage.
Cell Death Dis. 11:3632020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Deng S, Sherchan P, Jin P, Huang L, Travis
Z, Zhang JH, Gong Y and Tang J: Recombinant CCL17 enhances hematoma
resolution and activation of CCR4/ERK/Nrf2/CD163 signaling pathway
after intracerebral hemorrhage in mice. Neurotherapeutics.
17:1940–1953. 2020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan
H, Yang S, He J, Shi D and Wang Y: Netrin-1 alleviates subarachnoid
haemorrhage-induced brain injury via the PPARγ/NF-κB signalling
pathway. J Cell Mol Med. 23:2256–2262. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen JH, Wu T, Xia WY, Shi ZH, Zhang CL,
Chen L, Chen QX and Wang YH: An early neuroprotective effect of
atorvastatin against subarachnoid hemorrhage. Neural Regen Res.
15:1947–1954. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mo Y, Duan L, Yang Y, Liu W, Zhang Y, Zhou
L, Su S, Lo PC, Cai J, Gao L, et al: Nanoparticles improved
resveratrol brain delivery and its therapeutic efficacy against
intracerebral hemorrhage. Nanoscale. 13:3827–3840. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen JH, Wu T, Yang LK, Chen L, Zhu J, Li
PP, Hu X and Wang YH: Protective effects of atorvastatin on
cerebral vessel autoregulation in an experimental rabbit model of
subarachnoid hemorrhage. Mol Med Rep. 17:1651–1659. 2018.PubMed/NCBI
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kim JE, Park H, Lee JE, Kim TH and Kang
TC: PTEN is required for the anti-epileptic effects of AMPA
receptor antagonists in chronic epileptic rats. Int J Mol Sci.
21:56432020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Mazzocchetti P, Mancini A, Sciaccaluga M,
Megaro A, Bellingacci L, Di Filippo M, Cesarini EN, Romoli M,
Carrano N, Gardoni F, et al: Low doses of Perampanel protect
striatal and hippocampal neurons against in vitro ischemia by
reversing the ischemia-induced alteration of AMPA receptor subunit
composition. Neurobiol Dis. 140:1048482020. View Article : Google Scholar : PubMed/NCBI
|
40
|
De Caro C, Cristiano C, Avagliano C,
Cuozzo M, La Rana G, Aviello G, De Sarro G, Calignano A, Russo E
and Russo R: Analgesic and Anti-inflammatory effects of perampanel
in acute and chronic pain models in mice: Interaction with the
cannabinergic system. Front Pharmacol. 11:6202212021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Aida V, Niedzielko TL, Szaflarski JP and
Floyd CL: Acute administration of perampanel, an AMPA receptor
antagonist, reduces cognitive impairments after traumatic brain
injury in rats. Exp Neurol. 327:1132222020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Vandenabeele P, Galluzzi L, Vanden Berghe
T and Kroemer G: Molecular mechanisms of necroptosis: An ordered
cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen T, Zhu J, Wang YH and Hang CH: Arc
silence aggravates traumatic neuronal injury via mGluR1-mediated ER
stress and necroptosis. Cell Death Dis. 11:42020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H,
Liu N, You Y, Liu Y, Wang X and Ji J: Silencing of A20 aggravates
neuronal death and inflammation after traumatic brain injury: A
potential trigger of necroptosis. Front Mol Neurosci. 12:2222019.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Laird MD, Wakade C, Alleyne CH Jr and
Dhandapani KM: Hemin-induced necroptosis involves glutathione
depletion in mouse astrocytes. Free Radic Biol Med. 45:1103–1114.
2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Shen H, Liu C, Zhang D, Yao X, Zhang K, Li
H and Chen G: Role for RIP1 in mediating necroptosis in
experimental intracerebral hemorrhage model both in vivo and in
vitro. Cell Death Dis. 8:e26412017. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhang Y, Li M, Li X, Zhang H, Wang L, Wu
X, Zhang H and Luo Y: Catalytically inactive RIP1 and RIP3
deficiency protect against acute ischemic stroke by inhibiting
necroptosis and neuroinflammation. Cell Death Dis. 11:5652020.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yuan J, Amin P and Ofengeim D: Necroptosis
and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev
Neurosci. 20:19–33. 2019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Linkermann A and Green DR: Necroptosis. N
Engl J Med. 370:455–465. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xu X, Chua CC, Kong J, Kostrzewa RM,
Kumaraguru U, Hamdy RC and Chua BH: Necrostatin-1 protects against
glutamate-induced glutathione depletion and caspase-independent
cell death in HT-22 cells. J Neurochem. 103:2004–2014. 2007.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Liu L, Liu Y, Cheng X and Qiao X: The
alleviative effects of quercetin on Cadmium-induced necroptosis via
inhibition ROS/iNOS/NF-κB pathway in the Chicken brain. Biol Trace
Elem Res. 199:1584–1594. 2021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang KJ, Meng XY, Chen JF, Wang KY, Zhou
C, Yu R and Ma Q: Emodin induced necroptosis and inhibited
glycolysis in the renal cancer cells by enhancing ROS. Oxid Med
Cell Longev. 2021:88405902021.PubMed/NCBI
|
53
|
Tian Q, Qin B, Gu Y, Zhou L, Chen S, Zhang
S, Zhang S, Han Q, Liu Y and Wu X: ROS-mediated necroptosis is
involved in iron overload-induced osteoblastic cell death. Oxid Med
Cell Longev. 2020:12953822020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liu X, Zhang N, Wang D, Zhu D, Yuan Q,
Zhang X, Qian L, Niu H, Lu Y, Ren G, et al: Downregulation of
reticulocalbin-1 differentially facilitates apoptosis and
necroptosis in human prostate cancer cells. Cancer Sci.
109:1147–1157. 2018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhao D, Qin XP, Chen SF, Liao XY, Cheng J,
Liu R, Lei Y, Zhang ZF and Wan Q: PTEN inhibition protects against
experimental intracerebral hemorrhage-induced brain injury through
PTEN/E2F1/β-catenin pathway. Front Mol Neurosci. 12:2812019.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Chang N, El-Hayek YH, Gomez E and Wan Q:
Phosphatase PTEN in neuronal injury and brain disorders. Trends
Neurosci. 30:581–586. 2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Huang H, Hu C, Xu L, Zhu X, Zhao L and Min
J: The effects of hesperidin on neuronal apoptosis and cognitive
impairment in the sevoflurane anesthetized rat are mediated through
the PI3/Akt/PTEN and nuclear Factor-κB (NF-κB) signaling pathways.
Med Sci Monit. 26:e9205222020. View Article : Google Scholar : PubMed/NCBI
|
58
|
Huang SY, Sung CS, Chen WF, Chen CH, Feng
CW, Yang SN, Hung HC, Chen NF, Lin PR, Chen SC, et al: Involvement
of phosphatase and tensin homolog deleted from chromosome 10 in
rodent model of neuropathic pain. J Neuroinflammation. 12:592015.
View Article : Google Scholar : PubMed/NCBI
|