1
|
Yang T, Whitlock RS and Vasudevan SA:
Surgical management of hepatoblastoma and recent advances. Cancers
(Basel). 11:19442019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sharma D, Subbarao G and Saxena R:
Hepatoblastoma. Semin Diagn Pathol. 34:192–200. 2017. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cristóbal I, Sanz-Álvarez M, Luque M,
Caramés C, Rojo F and García-Foncillas J: The role of microRNAs in
hepatoblastoma tumors. Cancers (Basel). 11:4092019. View Article : Google Scholar
|
4
|
Venkatramani R, Wang L, Malvar J, Dias D,
Sposto R, Malogolowkin MH and Mascarenhas L: Tumor necrosis
predicts survival following neo-adjuvant chemotherapy for
hepatoblastoma. Pediatr Blood Cancer. 59:493–498. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Bell D, Ranganathan S, Tao J and Monga SP:
Novel advances in understanding of molecular pathogenesis of
hepatoblastoma: A Wnt/β-catenin perspective. Gene Expr. 17:141–154.
2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Huarte M: The emerging role of lncRNAs in
cancer. Nat Med. 21:1253–1261. 2015. View
Article : Google Scholar : PubMed/NCBI
|
7
|
Luo Z and Cao P: Long noncoding RNA PVT1
promotes hepatoblastoma cell proliferation through activating
STAT3. Cancer Manag Res. 20:8517–8527. 2019. View Article : Google Scholar
|
8
|
Chen LJ, Yuan MX, Ji CY, Zhang YB, Peng
YM, Zhang T, Gao HQ, Sheng XY, Liu ZY, Xie WX and Yin Q: Long
non-coding RNA CRNDE regulates angiogenesis in hepatoblastoma by
targeting the MiR-203/VEGFA axis. Pathobiology. 87:161–170. 2020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie F, Zhang L, Yao Q, Shan L, Liu J, Dong
N and Liang J: TUG1 promoted tumor progression by sponging
miR-335-5p and regulating CXCR4-Mediated infiltration of pro-tumor
immunocytes in CTNNB1-mutated hepatoblastoma. Onco Targets Ther.
14:3105–3115. 2020. View Article : Google Scholar
|
10
|
Li Q, Zhang J, Su DM, Guan LN, Mu WH, Yu
M, Ma X and Yang RJ: lncRNA TUG1 modulates proliferation,
apoptosis, invasion, and angiogenesis via targeting miR-29b in
trophoblast cells. Hum Genomics. 13:502019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lei H, Gao Y and Xu X: lncRNA TUG1
influences papillary thyroid cancer cell proliferation, migration
and EMT formation through targeting miR-145. Acta Biochim Biophys
Sin (Shanghai). 49:588–597. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou H, Gao Z and Wan F:
Taurine-upregulated gene 1 contributes to cancers through sponging
microRNA. Acta Biochim Biophys Sin (Shanghai). 51:123–130. 2019.
View Article : Google Scholar : PubMed/NCBI
|
13
|
He C, Liu Z, Jin L, Zhang F, Peng X, Xiao
Y, Wang X, Lyu Q and Cai X: lncRNA TUG1-Mediated Mir-142-3p
downregulation contributes to metastasis and the
epithelial-to-mesenchymal transition of hepatocellular carcinoma by
targeting ZEB1. Cell Physiol Biochem. 48:1928–1941. 2018.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu C, Li L, Xie F, Guo S, Liu F, Dong N
and Wang Y: lncRNA TUG1 sponges miR-204-5p to promote osteoblast
differentiation through upregulating Runx2 in aortic valve
calcification. Cardiovasc Res. 114:168–179. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon
H, Kim KH, Jin MS, Kwon NH, Kim S, et al: Tumor suppressor
miRNA-204-5p regulates growth, metastasis, and immune
microenvironment remodeling in breast cancer. Cancer Res.
79:1520–1534. 2019.PubMed/NCBI
|
16
|
Tang J, Li Z, Zhu Q, Wen W, Wang J, Xu J,
Wu W, Zhu Y, Xu H and Chen L: miR-204-5p regulates cell
proliferation, invasion, and apoptosis by targeting IL-11 in
esophageal squamous cell carcinoma. J Cell Physiol. 235:3043–3055.
2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu X, Gao X, Zhang W, Zhu T, Bi W and
Zhang Y: MicroRNA-204 deregulation in lung adenocarcinoma controls
the biological behaviors of endothelial cells potentially by
modulating Janus kinase 2-signal transducer and activator of
transcription 3 pathway. IUBMB Life. 70:81–91. 2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang X, Crowe PJ, Goldstein D and Yang JL:
STAT3 inhibition, a novel approach to enhancing targeted therapy in
human cancers (review). Int J Oncol. 41:1181–1191. 2012. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dong R, Liu GB, Liu BH, Chen G, Li K,
Zheng S and Dong KR: Targeting long non-coding RNA-TUG1 inhibits
tumor growth and angiogenesis in hepatoblastoma. Cell Death Dis.
7:e22782016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen X, Mangala LS, Mooberry L, Bayraktar
E, Dasari SK, Ma S, Ivan C, Court KA, Rodriguez-Aguayo C, Bayraktar
R, et al: Identifying and targeting angiogenesis-related microRNAs
in ovarian cancer. Oncogene. 38:6095–6108. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thomson DW and Dinger ME: Endogenous
microRNA sponges: Evidence and controversy. Nat Rev Genet.
17:272–283. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ranganathan S, Lopez-Terrada D and Alaggio
R: Hepatoblastoma and pediatric hepatocellular carcinoma: An
update. Pediatr Dev Pathol. 23:79–95. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Angelico R, Grimaldi C, Gazia C, Saffioti
MC, Manzia TM, Castellano A and Spada M: How do synchronous lung
metastases influence the surgical management of children with
hepatoblastoma? An update and systematic review of the literature.
Cancers (Basel). 11:16932019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Meyers RL, Katzenstein HM, Krailo M,
McGahren ED III and Malogolowkin MH: Surgical resection of
pulmonary metastatic lesions in children with hepatoblastoma. J
Pediatr Surg. 42:2050–2056. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Dong R, Jia D, Xue P, Cui X, Li K, Zheng
S, He X and Dong K: Genome-wide analysis of long noncoding RNA
(lncRNA) expression in hepatoblastoma tissues. PLoS One.
9:e855992014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kong YW, Ferland-McCollough D, Jackson TJ
and Bushell M: MicroRNAs in cancer management. Lancet Oncol.
13:e249–e258. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D,
Ji Y, Zhao C, Wang J, Yang BB and Zhang Y: miRNA-directed
regulation of VEGF and other angiogenic factors under hypoxia. PLoS
One. 1:e1162006. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu Q, Zhao Y and Wang P: miR-204 inhibits
angiogenesis and promotes sensitivity to cetuximab in head and neck
squamous cell carcinoma cells by blocking JAK2-STAT3 signaling.
Biomed Pharmacother. 99:278–285. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tan J, Qiu K, Li M and Liang Y:
Double-negative feedback loop between long non-coding RNA TUG1 and
miR-145 promotes epithelial to mesenchymal transition and
radioresistance in human bladder cancer cells. FEBS Lett.
589B:B3175–B3181. 2015. View Article : Google Scholar
|
31
|
Yoshikawa T, Miyamoto M, Aoyama T, Soyama
H, Goto T, Hirata J, Suzuki A, Nagaoka I, Tsuda H, Furuya K and
Takano M: JAK2/STAT3 pathway as a therapeutic target in ovarian
cancers. Oncol Lett. 15:5772–5780. 2018.PubMed/NCBI
|
32
|
Marotta LL, Almendro V, Marusyk A,
Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ,
Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway
is required for growth of CD44+CD24− stem
cell-like breast cancer cells in human tumors. J Clin Invest.
121:2723–2735. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xue C, Xie J, Zhao D, Lin S, Zhou T, Shi
S, Shao X, Lin Y, Zhu B and Cai X: The JAK/STAT3 signalling pathway
regulated angiogenesis in an endothelial cell/adipose-derived
stromal cell co-culture, 3D gel model. Cell Prolif. 50:e123072017.
View Article : Google Scholar : PubMed/NCBI
|