1
|
Howitt BE, Chang S, Eszlinger M, Paschke
R, Drage MG, Krane JF and Barletta JA: Fine-needle aspiration
diagnoses of noninvasive follicular variant of papillary thyroid
carcinoma. Am J Clin Pathol. 144:850–857. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lewinski A and Adamczewski Z: Papillary
thyroid carcinoma: A cancer with an extremely diverse genetic
background and prognosis. Pol Arch Intern Med. 127:388–389. 2017.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Ambrosi F, Righi A, Ricci C, Erickson LA,
Lloyd RV and Asioli S: Hobnail variant of papillary thyroid
carcinoma: A literature review. Endocr Pathol. 28:293–301. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Arianpoor A, Asadi M, Amini E, Ziaeemehr
A, Ahmadi Simab S and Zakavi SR: Investigating the prevalence of
risk factors of papillary thyroid carcinoma recurrence and
disease-free survival after thyroidectomy and central neck
dissection in Iranian patients. Acta Chir Belg. 120:173–178. 2020.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Tsuchida N, Ikeda MA, Iotashino U, Grieco
M and Vecchio G: FUCA1 is induced by wild-type p53 and expressed at
different levels in thyroid cancers depending on p53 status. Int J
Oncol. 50:2043–2048. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bogolyubova AV, Abrosimov AY, Selivanova
LS and Belousov PV: Histopatological and molecular genetic
characteristics of clinically aggressive variants of papillary
thyroid carcinoma. Arkh Patol. 81:46–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Jackson WF: Potassium channels in
regulation of vascular smooth muscle contraction and growth. Adv
Pharmacol. 78:89–144. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Martelli A: Potassium channels: A big
family, many different targets, great pharmacological
opportunities. Curr Med Chem. 25:26262018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Patel SH, Edwards MJ and Ahmad SA:
Intracellular ion channels in pancreas cancer. Cell Physiol
Biochem. 53:44–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang L, Zou W, Zhou SS and Chen DD:
Potassium channels and proliferation and migration of breast cancer
cells. Sheng Li Xue Bao. 61:15–20. 2009.PubMed/NCBI
|
11
|
Zhang P, Yang X, Yin Q, Yi J, Shen W, Zhao
L, Zhu Z and Liu J: Inhibition of SK4 potassium channels suppresses
cell proliferation, migration and the epithelial-mesenchymal
transition in triple-negative breast cancer cells. PLoS One.
11:e01544712016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Teisseyre A, Gasiorowska J and Michalak K:
Voltage-gated potassium channels Kv1.3-potentially new molecular
target in cancer diagnostics and therapy. Adv Clin Exp Med.
24:517–524. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Jiang S, Zhu L, Yang J, Hu L, Gu J, Xing
X, Sun Y and Zhang Z: Integrated expression profiling of potassium
channels identifys KCNN4 as a prognostic biomarker of pancreatic
cancer. Biochem Biophys Res Commun. 494:113–119. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Huang C, Sindic A, Hill CE, Hujer KM, Chan
KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF and Miller RT:
Interaction of the Ca2+-sensing receptor with the
inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in
inhibition of channel function. Am J Physiol Renal Physiol.
292:F1073–F1081. 2007. View Article : Google Scholar : PubMed/NCBI
|
15
|
Franke M, Ibrahim DM, Andrey G, Schwarzer
W, Heinrich V, Schopflin R, Kraft K, Kempfer R, Jerković I, Chan
WL, et al: Formation of new chromatin domains determines
pathogenicity of genomic duplications. Nature. 538:265–269. 2016.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu
W and Guo L: Upregulation of the inwardly rectifying potassium
channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell
lung cancer under the regulation of miR-7 and the Ras/MAPK pathway.
Mol Cancer. 14:592015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ji CD, Wang YX, Xiang DF, Liu Q, Zhou ZH,
Qian F, Yang L, Ren Y, Cui W, Xu SL, et al: Kir2.1 interaction with
Stk38 promotes invasion and metastasis of human gastric cancer by
enhancing MEKK2-MEK1/2-ERK1/2 signaling. Cancer Res. 78:3041–3053.
2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim HS, Kim DH, Kim JY, Jeoung NH, Lee IK,
Bong JG and Jung ED: Microarray analysis of papillary thyroid
cancers in Korean. Korean J Intern Med. 25:399–407. 2010.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Oczko-Wojciechowska M, Pfeifer A, Jarzab
M, Swierniak M, Rusinek D, Tyszkiewicz T, Kowalska M, Chmielik E,
Zembala-Nozynska E, Czarniecka A, et al: Impact of the tumor
microenvironment on the gene expression profile in papillary
thyroid cancer. Pathobiology. 87:143–154. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Leung T, Chen H, Stauffer AM, Giger KE,
Sinha S, Horstick EJ, Humbert JE, Hansen CA and Robishaw JD:
Zebrafish G protein gamma2 is required for VEGF signaling during
angiogenesis. Blood. 108:160–166. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Schwindinger WF and Robishaw JD:
Heterotrimeric G-protein betagamma-dimers in growth and
differentiation. Oncogene. 20:1653–1660. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pirone A, Cozzi B, Edelstein L, Peruffo A,
Lenzi C, Quilici F, Antonini R and Castagna M: Topography of Gng2-
and NetrinG2-expression suggests an insular origin of the human
claustrum. PLoS One. 7:e447452012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yajima I, Kumasaka MY, Yamanoshita O, Zou
C, Li X, Ohgami N and Kato M: GNG2 inhibits invasion of human
malignant melanoma cells with decreased FAK activity. Am J Cancer
Res. 4:182–188. 2014.PubMed/NCBI
|
24
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
StarBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42((Database Issue)): D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102.
2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Handklo-Jamal R, Meisel E, Yakubovich D,
Vysochek L, Beinart R, Glikson M, McMullen JR, Dascal N, Nof E and
Oz S: Andersen-tawil syndrome is associated with impaired
PIP2 regulation of the potassium channel Kir2.1. Front
Pharmacol. 11:6722020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cheng C, Wang Q, Zhu M, Liu K and Zhang Z:
Integrated analysis reveals potential long non-coding RNA
biomarkers and their potential biological functions for disease
free survival in gastric cancer patients. Cancer Cell Int.
19:1232019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang H, Lin HC, Liu H, Gan D, Jin W, Cui
C, Yan Y, Qian Y, Han C and Wang Z: A 6 lncRNA-based risk score
system for predicting the recurrence of colon adenocarcinoma
patients. Front Oncol. 10:812020. View Article : Google Scholar : PubMed/NCBI
|
30
|
van Staveren WC, Solís DW, Delys L, Duprez
L, Andry G, Franc B, Thomas G, Libert F, Dumont JE, Detours V and
Maenhaut C: Human thyroid tumor cell lines derived from different
tumor types present a common dedifferentiated phenotype. Cancer
Res. 67:8113–8120. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yajima I, Kumasaka MY, Naito Y, Yoshikawa
T, Takahashi H, Funasaka Y, Suzuki T and Kato M: Reduced GNG2
expression levels in mouse malignant melanomas and human melanoma
cell lines. Am J Cancer Res. 2:322–329. 2012.PubMed/NCBI
|
32
|
Yajima I, Kumasaka MY, Tamura H, Ohgami N
and Kato M: Functional analysis of GNG2 in human malignant melanoma
cells. J Dermatol Sci. 68:172–178. 2012. View Article : Google Scholar : PubMed/NCBI
|