1
|
Feldman EL, Callaghan BC, Pop-Busui R,
Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW and
Viswanathan V: Diabetic neuropathy. Nat Rev Dis Primers. 5:422019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Biessels GJ and Despa F: Cognitive decline
and dementia in diabetes: Mechanisms and clinical implications. Nat
Rev Endocrinol. 14:591–604. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Grieb P: Intracerebroventricular
streptozotocin injections as a model of Alzheimer's disease: In
search of a relevant mechanism. Mol Neurobiol. 53:1741–1752. 2016.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Sun P, Ortega G, Tan Y, Hua Q, Riederer
PF, Deckert J and Schmitt-Böhrer AG: Streptozotocin impairs
proliferation and differentiation of adult hippocampal neural stem
cells in vitro-correlation with alterations in the expression of
proteins associated with the insulin system. Front Aging Neurosci.
10:1452018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Isaev NK, Genrikhs EE, Voronkov DN,
Kapkaeva MR and Stelmashook EV: Streptozotocin toxicity in vitro
depends on maturity of neurons. Toxicol Appl Pharmacol. 348:99–104.
2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Biswas J, Goswami P, Gupta S, Joshi N,
Nath C and Singh S: Streptozotocin induced neurotoxicity involves
Alzheimer's related pathological markers: A study on N2A cells. Mol
Neurobiol. 53:2794–2806. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pepe G, De Maglie M, Minoli L, Villa A,
Maggi A and Vegeto E: Selective proliferative response of microglia
to alternative polarization signals. J Neuroinflammation.
14:2362017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Spielman LJ, Gibson DL and Klegeris A:
Incretin hormones regulate microglia oxidative stress, survival and
expression of trophic factors. Eur J Cell Biol. 96:240–253. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhan X, Stamova B and Sharp FR:
Lipopolysaccharide associates with amyloid plaques, neurons and
oligodendrocytes in Alzheimer's disease brain: A review. Front
Aging Neurosci. 10:422018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Batista CRA, Gomes GF, Candelario-Jalil E,
Fiebich BL and de Oliveira ACP: Lipopolysaccharide-induced
neuroinflammation as a bridge to understand neurodegeneration. Int
J Mol Sci. 20:22932019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Deng I, Corrigan F, Zhai G, Zhou XF and
Bobrovskaya L: Lipopolysaccharide animal models of Parkinson's
disease: Recent progress and relevance to clinical disease. Brain
Behav Immun-Heal. 4:1000602020. View Article : Google Scholar
|
12
|
Chen Z, Jalabi W, Shpargel KB, Farabaugh
KT, Dutta R, Yin X, Kidd GJ, Bergmann CC, Stohlman SA and Trapp BD:
Lipopolysaccharide-induced microglial activation and
neuroprotection against experimental brain injury is independent of
hematogenous TLR4. J Neurosci. 32:11706–11715. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hayakawa K, Okazaki R, Morioka K, Nakamura
K, Tanaka S and Ogata T: Lipopolysaccharide preconditioning
facilitates M2 activation of resident microglia after spinal cord
injury. J Neurosci Res. 92:1647–1658. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wendeln AC, Degenhardt K, Kaurani L,
Gertig M, Ulas T, Jain G, Wagner J, Häsler LM, Wild K, Skodras A,
et al: Innate immune memory in the brain shapes neurological
disease hallmarks. Nature. 556:332–338. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Ohgomori T and Jinno S: Modulation of
neuropathology and cognitive deficits by lipopolysaccharide
preconditioning in a mouse pilocarpine model of status epilepticus.
Neuropharmacology. 176:1082272020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mizobuchi H and Soma GI: Low-dose
lipopolysaccharide as an immune regulator for homeostasis
maintenance in the central nervous system through transformation to
neuroprotective microglia. Neural Regen Res. 16:1928–1934. 2021.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cacci E, Ajmone-Cat MA, Anelli T, Biagioni
S and Minghetti L: In Vitro neuronal and glial differentiation from
embryonic or adult neural precursor cells are differently affected
by chronic or acute activation of microglia. Glia. 56:412–425.
2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Twayana KS, Chaudhari N and Ravanan P:
Prolonged lipopolysaccharide exposure induces transient
immunosuppression in BV2 microglia. J Cell Physiol. 234:1889–1903.
2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mizobuchi H, Yamamoto K, Tsutsui S,
Yamashita M, Nakata Y, Inagawa H, Kohchi C and Soma GI: A unique
hybrid characteristic having both pro- and anti-inflammatory
phenotype transformed by repetitive low-dose lipopolysaccharide in
C8-B4 microglia. Sci Rep. 10:89452020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Royo N, Conte V, Saatman KE, Shimizu S,
Belfield CM, Soltesz KM, Davis JE, Fujimoto ST and McIntosh TK:
Hippocampal vulnerability following traumatic brain injury: A
potential role for neurotrophin-4/5 in pyramidal cell
neuroprotection. Eur J Neurosci. 23:1089–1102. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Royo NC, LeBold D, Magge SN, Chen I,
Hauspurg A, Cohen AS and Watson DJ: Neurotrophin-mediated
neuroprotection of hippocampal neurons following traumatic brain
injury is not associated with acute recovery of hippocampal
function. Neuroscience. 148:359–370. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Malik SZ, Motamedi S, Royo NC, Lebold D
and Watson DJ: Identification of potentially neuroprotective genes
upregulated by neurotrophin treatment of CA3 neurons in the injured
brain. J Neurotrauma. 28:415–430. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Machalińska A, Kawa M, Pius-Sadowska E,
Stępniewski J, Nowak W, Rogińska D, Kaczyńska K, Baumert B,
Wiszniewska B, Józkowicz A, et al: Long-term neuroprotective
effects of NT-4-engineered mesenchymal stem cells injected
intravitreally in a mouse model of acute retinal injury. Invest
Ophthalmol Vis Sci. 54:8292–8305. 2013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Arnold SE, Arvanitakis Z, Macauley-Rambach
SL, Koenig AM, Wang HY, Ahima RS, Craft S, Gandy S, Buettner C,
Stoeckel LE, et al: Brain insulin resistance in type 2 diabetes and
Alzheimer disease: Concepts and conundrums. Nat Rev Neurol.
14:168–181. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
R Core Team, . R: A Language and
Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna 2019. https://www.R-project.org/
|
27
|
Kanda N, Koike S and Watanabe S:
Prostaglandin E2 enhances neurotrophin-4 production via EP3
receptor in human keratinocytes. J Pharmacol Exp Ther. 315:796–804.
2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Deng H, Maitra U, Morris M and Li L:
Molecular mechanism responsible for the priming of macrophage
activation. J Biol Chem. 288:3897–3906. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Ji C, Xue GF, Li G, Li D and Hölscher C:
Neuroprotective effects of glucose-dependent insulinotropic
polypeptide in Alzheimer's disease. Rev Neurosci. 27:61–70. 2016.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yu YW, Hsieh TH, Chen KY, Wu JC, Hoffer
BJ, Greig NH, Li Y, Lai JH, Chang CF, Lin JW, et al:
Glucose-dependent insulinotropic polypeptide ameliorates mild
traumatic brain injury-induced cognitive and sensorimotor deficits
and neuroinflammation in rats. J Neurotrauma. 33:2044–2054. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Seino Y and Yabe D: Glucose-dependent
insulinotropic polypeptide and glucagon-like peptide-1: Incretin
actions beyond the pancreas. J Diabetes Investig. 4:108–130. 2013.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ajmone-Cat MA, Nicolini A and Minghetti L:
Prolonged exposure of microglia to lipopolysaccharide modifies the
intracellular signaling pathways and selectively promotes
prostaglandin E 2 synthesis. J Neurochem. 87:1193–1203. 2003.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Park JY, Chung TW, Jeong YJ, Kwak CH, Ha
SH, Kwon KM, Abekura F, Cho SH, Lee YC, Ha KT, et al: Ascofuranone
inhibits lipopolysaccharide-induced inflammatory response via
NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7
macrophages. PLoS One. 12:e01713222017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Slomiany BL and Slomiany A:
Proinflammatory signaling cascades of periodontopathic oral
pathogen porphyromonas gingivalis. J Biosci Med. 6:63–88. 2018.
|
35
|
Yen JH, Kocieda VP, Jing H and Ganea D:
Prostaglandin E2 induces matrix metalloproteinase 9 expression in
dendritic cells through two independent signaling pathways leading
to activator protein 1 (AP-1) activation. J Biol Chem.
286:38913–38923. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ye Y, Lin P, Zhu J, Jeschke U and von
Schönfeldt V: Multiple roles of prostaglandin E2 receptors in
female reproduction. Endocrines. 1:22–34. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tuvikene J, Pruunsild P, Orav E, Esvald EE
and Timmusk T: AP-1 transcription factors mediate BDNF-positive
feedback loop in cortical neurons. J Neurosci. 36:1290–1305. 2016.
View Article : Google Scholar : PubMed/NCBI
|
38
|
da Silva Meirelles L, Simon D and Regner
A: Neurotrauma: The crosstalk between neurotrophins and
inflammation in the acutely injured brain. Int J Mol Sci.
18:10822017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sakharnova TA, Vedunova MV and Mukhina IV:
Brain-derived neurotrophic factor (BDNF) and its role in the
functioning of the central nervous system. Neurochem J. 6:251–259.
2012. View Article : Google Scholar
|
40
|
Faivre E, Gault VA, Thorens B and Hölscher
C: Glucose-dependent insulinotropic polypeptide receptor knockout
mice are impaired in learning, synaptic plasticity, and
neurogenesis. J Neurophysiol. 105:1574–1580. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kalwat MA, Huang Z, McGlynn K and Cobb M:
BDNF/TrkB signaling in pancreatic islet beta cells. 4000102018.
|
42
|
Cani PD, Amar J, Iglesias MA, Poggi M,
Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, et
al: Metabolic endotoxemia initiates obesity and insulin resistance.
Diabetes. 56:1761–1772. 2007. View Article : Google Scholar : PubMed/NCBI
|
43
|
Pop-Busui R, Boulton AJ, Feldman EL, Bril
V, Freeman R, Malik RA, Sosenko JM and Ziegler D: Diabetic
neuropathy: A position statement by the American diabetes
association. Diabetes Care. 40:136–154. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Javed S, Petropoulos IN, Alam U and Malik
RA: Treatment of painful diabetic neuropathy. Ther Adv Chronic Dis.
6:15–28. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Naseri R, Farzaei F, Fakhri S, El-Senduny
FF, Altouhamy M, Bahramsoltani R, Ebrahimi F, Rahimi R and Farzaei
MH: Polyphenols for diabetes associated neuropathy: Pharmacological
targets and clinical perspective. Daru. 27:781–798. 2019.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Li Q and Barres BA: Microglia and
macrophages in brain homeostasis and disease. Nat Rev Immunol.
18:225–242. 2018. View Article : Google Scholar : PubMed/NCBI
|