1
|
Mims JW: Asthma: Definitions and
pathophysiology. Int Forum Allergy Rhinol. 5 (Suppl 1):S2–S6. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Nanda A and Wasan AN: Asthma in adults.
Med Clin North Am. 104:95–108. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Ober C and Yao TC: The genetics of asthma
and allergic disease: A 21st century perspective. Immunol Rev.
242:10–30. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ma Y, Ge A, Zhu W, Liu YN, Ji NF, Zha WJ,
Zhang JX, Zeng XN and Huang M: Morin attenuates ovalbumin-induced
airway inflammation by modulating oxidative stress-responsive MAPK
signaling. Oxid Med Cell Longev. 2016:58436722016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lambrecht BN and Hammad H: The immunology
of asthma. Nat Immunol. 16:45–56. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Holgate ST: Innate and adaptive immune
responses in asthma. Nat Med. 18:673–683. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yi S, Zhai J, Niu R, Zhu G, Wang M, Liu J,
Huang H, Wang Y, Jing X, Kang L, et al: Eosinophil recruitment is
dynamically regulated by interplay among lung dendritic cell
subsets after allergen challenge. Nat Commun. 9:38792018.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Draijer C and Peters-Golden M: Alveolar
macrophages in allergic asthma: The forgotten cell awakes. Curr
Allergy Asthma Rep. 17:122017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Song Y, Wu Y, Li X, Shen Y, Ding Y, Zhu H,
Liu F, Yu K, Sun L and Qian F: Protostemonine attenuates
alternatively activated macrophage and DRA-induced asthmatic
inflammation. Biochem Pharmacol. 155:198–206. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Liu J, He C, Tang Y, Liu W, Xu Y, Li Z,
Qin X and Jin S: Cremastra appendiculata (D.Don) Makino, a
potential anti-tumor traditional Chinese medicine: Review. J
Ethnopharmacol. 279:1143572021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lajter I, Vasas A, Béni Z, Forgo P, Binder
M, Bochkov V, Zupkó I, Krupitza G, Frisch R, Kopp B and Hohmann J:
Sesquiterpenes from Neurolaena lobata and their antiproliferative
and anti-inflammatory activities. J Nat Prod. 77:576–582. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Butturini E, Carcereri de Prati A, Boriero
D and Mariotto S: Natural sesquiterpene lactones enhance
chemosensitivity of tumor cells through redox regulation of STAT3
signaling. Oxid Med Cell Longev. 2019:45689642019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Quintana J and Estévez F: Recent advances
on cytotoxic sesquiterpene lactones. Curr Pharm Des. 24:4355–4361.
2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu R, Peng Y, Wang M and Li X: Intestinal
absorption of isoalantolactone and alantolactone, two sesquiterpene
lactones from radix inulae, using caco-2 cells. Eur J Drug Metab
Pharmacokinet. 44:295–303. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lu N, Lv Q, Sun X, Zhou Y, Guo Y, Qiu J,
Zhang P and Wang J: Isoalantolactone restores the sensitivity of
gram-negative enterobacteriaceae carrying MCR-1 to carbapenems. J
Cell Mol Med. 24:2475–2483. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jung YS, Lee HS, Cho HR, Kim KJ, Kim JH,
Safe S and Lee SO: Dual targeting of Nur77 and AMPKα by
isoalantolactone inhibits adipogenesis in vitro and decreases body
fat mass in vivo. Int J Obes (Lond). 43:952–962. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li X, Lu C, Liu S, Liu S, Su C, Xiao T, Bi
Z, Sheng P, Huang M, Liu X, et al: Synthesis and discovery of a
drug candidate for treatment of idiopathic pulmonary fibrosis
through inhibition of TGF-β1 pathway. Eur J Med Chem. 157:229–247.
2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Yuan CB, Tian L, Yang B and Zhou HY:
Isoalantolactone protects LPS-induced acute lung injury through
Nrf2 activation. Microb Pathog. 123:213–218. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
He G, Zhang X, Chen Y, Chen J, Li L and
Xie Y: Isoalantolactone inhibits LPS-induced inflammation via NF-κB
inactivation in peritoneal macrophages and improves survival in
sepsis. Biomed Pharmacother. 90:598–607. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ding YH, Song YD, Wu YX, He HQ, Yu TH, Hu
YD, Zhang DP, Jiang HC, Yu KK, Li XZ, et al: Isoalantolactone
suppresses LPS-induced inflammation by inhibiting TRAF6
ubiquitination and alleviates acute lung injury. Acta Pharmacol
Sin. 40:64–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Duchene B, Caffry S, Kaminsky DA, Que LG,
Poynter ME and Dixon AE: Functional significance of 8-isoprostanes
in sinonasal disease and asthma. Respir Med. 185:1065062021.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Noel JC and Berin MC: Role of innate
immunity and myeloid cells in susceptibility to allergic disease.
Ann NY Acad Sci. Jun 22–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
24
|
Lee HS, Park DE, Bae B, Oh K, Jung JW, Lee
DS, Kim IG, Cho SH and Kang HR: Tranglutaminase 2 contributes to
the asthmatic inflammation by modulating activation of alveolar
macrophages. Immun Inflamm Dis. May 4–2021.(Epub ahead of print).
View Article : Google Scholar : PubMed/NCBI
|
25
|
Watanabe S, Suzukawa M, Tashimo H, Ohshima
N, Asari I, Imoto S, Kobayashi N, Tohma S, Nagase T and Ohta K:
High serum cytokine levels may predict the responsiveness of
patients with severe asthma to benralizumab. J Asthma. Jul
1–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
26
|
Binnemars-Postma K, Bansal R, Storm G and
Prakash J: Targeting the Stat6 pathway in tumor-associated
macrophages reduces tumor growth and metastatic niche formation in
breast cancer. FASEB J. 32:969–978. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Papi A, Brightling C, Pedersen SE and
Reddel HK: Asthma. Lancet. 391:783–800. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu
L, Zhao M, Liu Q, Cheng Z, Zou J, et al: Naturally occurring
anti-cancer compounds: Shining from Chinese herbal medicine. Chin
Med. 14:482019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gao Z, Li Q, Wu X, Zhao X, Zhao L and Tong
X: New insights into the mechanisms of Chinese herbal products on
diabetes: A focus on the ‘bacteria-mucosal
immunity-inflammation-diabetes’ axis. J Immunol Res.
2017:18130862017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu C, Liao JZ and Li PY: Traditional
Chinese herbal extracts inducing autophagy as a novel approach in
therapy of nonalcoholic fatty liver disease. World J Gastroenterol.
23:1964–1973. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fricker M and Gibson PG: Macrophage
dysfunction in the pathogenesis and treatment of asthma. Eur Respir
J. 50:17001962017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Saradna A, Do DC, Kumar S, Fu QL and Gao
P: Macrophage polarization and allergic asthma. Transl Res.
191:1–14. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li R, Shang Y, Hu X, Yu Y, Zhou T, Xiong W
and Zou X: ATP/P2X7r axis mediates the pathological process of
allergic asthma by inducing M2 polarization of alveolar
macrophages. Exp Cell Res. 386:1117082020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou Y, Do DC, Ishmael FT, Squadrito ML,
Tang HM, Tang HL, Hsu MH, Qiu L, Li C, Zhang Y, et al: Mannose
receptor modulates macrophage polarization and allergic
inflammation through miR-511-3p. J Allergy Clin Immunol.
141:350–364.e8. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Becerra-Díaz M, Strickland AB, Keselman A
and Heller NM: Androgen and androgen receptor as enhancers of M2
macrophage polarization in allergic lung inflammation. J Immunol.
201:2923–2933. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Han X, Huang S, Xue P, Fu J, Liu L, Zhang
C, Yang L, Xia L, Sun L, Huang SK and Zhou Y: LncRNA PTPRE-AS1
modulates M2 macrophage activation and inflammatory diseases by
epigenetic promotion of PTPRE. Sci Adv. 5:eaax92302019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang Y, Xu Y, Zhang P, Ruan W, Zhang L,
Yuan S, Pang T and Jia AQ: Smiglaside A ameliorates LPS-induced
acute lung injury by modulating macrophage polarization via
AMPK-PPARγ pathway. Biochem Pharmacol. 156:385–395. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Chun JM, Lee AR, Kim HS, Lee AY, Gu GJ,
Moon BC and Kwon BI: Peucedanum japonicum extract attenuates
allergic airway inflammation by inhibiting Th2 cell activation and
production of pro-inflammatory mediators. J Ethnopharmacol.
211:78–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang F, Sang Y, Chen D, Wu X, Wang X,
Yang W and Chen Y: M2 macrophage-derived exosomal long non-coding
RNA AGAP2-AS1 enhances radiotherapy immunity in lung cancer by
reducing microRNA-296 and elevating NOTCH2. Cell Death Dis.
12:4672021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ying W, Gao H, Dos Reis FCG, Bandyopadhyay
G, Ofrecio JM, Luo Z, Ji Y, Jin Z, Ly C and Olefsky JM: MiR-690, an
exosomal-derived miRNA from M2-polarized macrophages, improves
insulin sensitivity in obese mice. Cell Metab. 33:781–790.e5. 2021.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Chung S, Kim JY, Song MA, Park GY, Lee YG,
Karpurapu M, Englert JA, Ballinger MN, Pabla N, Chung HY and
Christman JW: FoxO1 is a critical regulator of M2-like macrophage
activation in allergic asthma. Allergy. 74:535–548. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Cao J, Dong R, Jiang L, Gong Y, Yuan M,
You J, Meng W, Chen Z, Zhang N, Weng Q, et al: LncRNA-MM2P
identified as a modulator of macrophage M2 polarization. Cancer
Immunol Res. 7:292–305. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Wheeler KC, Jena MK, Pradhan BS, Nayak N,
Das S, Hsu CD, Wheeler DS, Chen K and Nayak NR: VEGF may contribute
to macrophage recruitment and M2 polarization in the decidua. PLoS
One. 13:e01910402018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Cortes JR, Perez-G M, Rivas MD and
Zamorano J: Kaempferol inhibits IL-4-induced STAT6 activation by
specifically targeting JAK3. J Immunol. 179:3881–3887. 2007.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhu T, Zhang W, Feng SJ and Yu HP: Emodin
suppresses LPS-induced inflammation in RAW264.7 cells through a
PPARγ-dependent pathway. Int Immunopharmacol. 34:16–24. 2016.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Wen Q, Mei L, Ye S, Liu X, Xu Q, Miao J,
Du S, Chen D, Li C and Li H: Chrysophanol demonstrates
anti-inflammatory properties in LPS-primed RAW 264.7 macrophages
through activating PPAR-γ. Int Immunopharmacol. 56:90–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Nelson VL, Nguyen HCB, Garcìa-Cañaveras
JC, Briggs ER, Ho WY, DiSpirito JR, Marinis JM, Hill DA and Lazar
MA: PPARγ is a nexus controlling alternative activation of
macrophages via glutamine metabolism. Genes Dev. 32:1035–1044.
2018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhao M, Bian YY, Yang LL, Chen YQ, Wang
YJ, Ma YT, Pei YQ, Li WL and Zeng L: HuoXueTongFu formula
alleviates intraperitoneal adhesion by regulating macrophage
polarization and the SOCS/JAK2/STAT/PPAR-γ signalling pathway.
Mediators Inflamm. 2019:17693742019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Kapoor N, Niu J, Saad Y, Kumar S, Sirakova
T, Becerra E, Li X and Kolattukudy PE: Transcription factors STAT6
and KLF4 implement macrophage polarization via the dual catalytic
powers of MCPIP. J Immunol. 194:6011–6023. 2015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li S, Zhou Q, He H, Zhao Y and Liu Z:
Peroxisome proliferator-activated receptor γ agonists induce cell
cycle arrest through transcriptional regulation of Kruppel-like
factor 4 (KLF4). J Biol Chem. 288:4076–4084. 2013. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen W, Li X, Guo S, Song N, Wang J, Jia L
and Zhu A: Tanshinone IIA harmonizes the crosstalk of autophagy and
polarization in macrophages via miR-375/KLF4 pathway to attenuate
atherosclerosis. Int Immunopharmacol. 70:486–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Almatroodi SA, Almatroudi A, Alsahli MA,
Aljasir MA, Syed MA and Rahmani AH: Epigallocatechin-3-Gallate
(EGCG), an active compound of green tea attenuates acute lung
injury regulating macrophage polarization and Krüpple-like-factor 4
(KLF4) expression. Molecules. 25:28532020. View Article : Google Scholar : PubMed/NCBI
|
53
|
Handa P, Thomas S, Morgan-Stevenson V,
Maliken BD, Gochanour E, Boukhar S, Yeh MM and Kowdley KV: Iron
alters macrophage polarization status and leads to steatohepatitis
and fibrogenesis. J Leukoc Biol. 105:1015–1026. 2019. View Article : Google Scholar : PubMed/NCBI
|
54
|
Chen W, Li P, Liu Y, Yang Y, Ye X, Zhang F
and Huang H: Isoalantolactone induces apoptosis through
ROS-mediated ER stress and inhibition of STAT3 in prostate cancer
cells. J Exp Clin Cancer Res. 37:3092018. View Article : Google Scholar : PubMed/NCBI
|
55
|
Wang J, Cui L, Feng L, Zhang Z, Song J,
Liu D and Jia X: Isoalantolactone inhibits the migration and
invasion of human breast cancer MDA-MB-231 cells via suppression of
the p38 MAPK/NF-κB signaling pathway. Oncol Rep. 36:1269–1276.
2016. View Article : Google Scholar : PubMed/NCBI
|