1
|
GBD 2017 Causes of Death Collaborators, .
Global, regional, and national age-sex-specific mortality for 282
causes of death in 195 countries and territories, 1980-2017: A
systematic analysis for the Global Burden of Disease Study 2017.
Lancet. 392:1736–1788. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Singh D, Agusti A, Anzueto A, Barnes PJ,
Bourbeau J, Celli BR, Criner GJ, Frith P, Halpin DMG, Han M, et al:
Global strategy for the diagnosis, management, and prevention of
chronic obstructive lung disease: The GOLD science committee report
2019. Eur Respir J. 53:19001642019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Decramer M, Janssens W and Miravitlles M:
Chronic obstructive pulmonary disease. Lancet. 379:1341–1351. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Tuder RM and Petrache I: Pathogenesis of
chronic obstructive pulmonary disease. J Clin Invest.
122:2749–2755. 2012. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Brightling C and Greening N: Airway
inflammation in COPD-progress to precision medicine. Eur Respir J.
54:19006512019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gorska K, Paplinska-Goryca M, Nejman-Gryz
P, Goryca K and Krenke R: Eosinophilic and neutrophilic airway
inflammation in the phenotyping of mild-to-moderate asthma and
chronic obstructive pulmonary disease. COPD. 14:181–189. 2017.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Magnussen H: Therapy control of COPD by
eosinophilic granulocytes? Dtsch Med Wochenschr. 144:917–921.
2019.(In German). PubMed/NCBI
|
8
|
Pavord ID: Biologics and chronic
obstructive pulmonary disease. J Allergy Clin Immunol.
141:1983–1991. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yousuf A and Brightling CE: Biologic
drugs: A new target therapy in COPD? COPD. 15:99–107. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Cruz T, Lopez-Giraldo A, Noell G,
Casas-Recasens S, Garcia T, Molins L, Juan M, Fernandez MA, Agustí
A and Faner R: Multi-level immune response network in mild-moderate
chronic obstructive pulmonary disease (COPD). Respir Res.
20:1522019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pan Z, Yu H and Liao JL: Probing cellular
and molecular mechanisms of cigarette smoke-induced immune response
in the progression of chronic obstructive pulmonary disease using
multiscale network modeling. PLoS One. 11:e01631922016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Butler CC, Gillespie D, White P, Bates J,
Lowe R, Thomas-Jones E, Wootton M, Hood K, Phillips R, Melbye H, et
al: C-Reactive protein testing to guide antibiotic prescribing for
COPD exacerbations. N Engl J Med. 381:111–120. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bradford E, Jacobson S, Varasteh J,
Comellas AP, Woodruff P, O'Neal W, DeMeo DL, Li X, Kim V, Cho M, et
al: The value of blood cytokines and chemokines in assessing COPD.
Respir Res. 18:1802017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Regan EA, Hersh CP, Castaldi PJ, DeMeo DL,
Silverman EK, Crapo JD and Bowler RP: Omics and the search for
blood biomarkers in Chronic obstructive pulmonary disease: Insights
from COPDGene. Am J Respir Cell Mol Biol. 61:143–149. 2019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Zou Y, Chen X, Liu J, Zhou DB, Kuang X,
Xiao J, Yu Q, Lu X, Li W, Xie B and Chen Q: Serum IL-1β and IL-17A
levels in patients with COPD: Associations with clinical
parameters. Int J Chron Obstruct Pulmon Dis. 12:1247–1254. 2017.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Fermont JM, Masconi KL, Jensen MT, Ferrari
R, Di Lorenzo VAP, Marott JM, Schuetz P, Watz H, Waschki B,
Müllerova H, et al: Biomarkers and clinical outcomes in COPD: A
systematic review and meta-analysis. Thorax. 74:439–446. 2019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Bai Y, Zhou Q, Fang Q, Song L and Chen K:
Inflammatory cytokines and T-Lymphocyte subsets in serum and sputum
in patients with bronchial asthma and chronic obstructive pulmonary
disease. Med Sci Monit. 25:2206–2210. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Papaioannou AI, Konstantelou E,
Papaporfyriou A, Bartziokas K, Spathis A, Bakakos P, Loukides S,
Koulouris N, Papiris S and Kostikas K: Serum surfactant protein
levels in patients admitted to the hospital with acute COPD
exacerbation. Lung. 196:201–205. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhai J, Insel M, Addison KJ, Stern DA,
Pederson W, Dy A, Rojas-Quintero J, Owen CA, Sherrill DL, Morgan W,
et al: Club cell secretory protein deficiency leads to altered lung
function. Am J Respir Crit Care Med. 199:302–312. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rangasamy L, Geronimo BD, Ortin I, Coderch
C, Zapico JM, Ramos A and de Pascual-Teresa B: Molecular imaging
probes based on matrix metalloproteinase inhibitors (MMPIs).
Molecules. 24:29822019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Stockley RA, Halpin DMG, Celli BR and
Singh D: Chronic obstructive pulmonary disease Biomarkers and their
interpretation. Am J Respir Crit Care Med. 199:1195–1204. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Graham BL, Steenbruggen I, Miller MR,
Barjaktarevic IZ, Cooper BG, Hall GL, Hallstrand TS, Kaminsky DA,
McCarthy K, McCormack MC, et al: Standardization of spirometry 2019
update. An official American thoracic society and European
respiratory society technical statement. Am J Respir Crit Care Med.
200:e70–e88. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Munari AB, Gulart AA, Dos Santos K,
Venâncio RS, Karloh M and Mayer AF: Modified medical research
council dyspnea scale in GOLD classification better reflects
physical activities of daily living. Respir Care. 63:77–85. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Skierka AS and Michels KB: Ethical
principles and placebo-controlled trials-interpretation and
implementation of the Declaration of Helsinki's placebo paragraph
in medical research. BMC Med Ethics. 19:242018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Caramori G, Casolari P, Barczyk A, Durham
AL, Di Stefano A and Adcock I: COPD immunopathology. Semin
Immunopathol. 38:497–515. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cruz T, Lopez-Giraldo A, Noell G, Molins
L, Juan M, Fernandez MA, Canet MRF and Agusti A: Pulmonary and
systemic cellular immune response network in patients with
mild-moderate COPD. Eur Respiratory J Conf. 50:2017.
|
28
|
Hume DA, Irvine KM and Pridans C: The
mononuclear phagocyte system: The relationship between monocytes
and macrophages. Trends Immunol. 40:98–112. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang J, Zhang L, Yu C, Yang XF and Wang H:
Monocyte and macrophage differentiation: Circulation inflammatory
monocyte as biomarker for inflammatory diseases. Biomark Res.
2:12014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sun W, Kechris K, Jacobson S, Drummond MB,
Hawkins GA, Yang J, Chen TH, Quibrera PM, Anderson W, Barr RG, et
al: Common genetic polymorphisms influence blood biomarker
measurements in COPD. PLoS Genet. 12:e10060112016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Mannino DM: Biomarkers for chronic
obstructive pulmonary disease diagnosis and progression: Insights,
disappointments and promise. Curr Opin Pulm Med. 25:144–149. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Garudadri S and Woodruff PG: Targeting
chronic obstructive pulmonary disease phenotypes, endotypes, and
biomarkers. Ann Am Thorac Soc. 15 (Suppl 4):S234–S238. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Lee S, Ro H, In HJ, Choi JH, Kim MO, Lee
J, Hong ST and Lee SU: Fisetin inhibits TNF-α/NF-κB-induced IL-8
expression by targeting PKCδ in human airway epithelial cells.
Cytokine. 108:247–254. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Christenson SA, van den Berge M, Faiz A,
Inkamp K, Bhakta N, Bonser LR, Zlock LT, Barjaktarevic IZ, Barr RG,
Bleecker ER, et al: An airway epithelial IL-17A response signature
identifies a steroid-unresponsive COPD patient subgroup. J Clin
Invest. 129:169–181. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Roos AB, Sanden C, Mori M, Bjermer L,
Stampfli MR and Erjefalt JS: IL-17A is elevated in end-stage
chronic obstructive pulmonary disease and contributes to cigarette
smoke-induced lymphoid neogenesis. Am J Respir Crit Care Med.
191:1232–1241. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zheng X, Zhang L, Chen J, Gu Y, Xu J and
Ouyang Y: Dendritic cells and Th17/Treg ratio play critical roles
in pathogenic process of chronic obstructive pulmonary disease.
Biomed Pharmacother. 108:1141–1151. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ito JT, Cervilha DAB, Lourenco JD,
Goncalves NG, Volpini RA, Caldini EG, Landman G, Lin CJ, Velosa
APP, Teodoro WPR, et al: Th17/Treg imbalance in COPD progression: A
temporal analysis using a CS-induced model. PLoS One.
14:e02093512019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Li XN, Pan X and Qiu D: Imbalances of Th17
and Treg cells and their respective cytokines in COPD patients by
disease stage. Int J Clin Exp Med. 7:5324–5329. 2014.PubMed/NCBI
|