1
|
Hu W and Huang Y: Targeting the
platelet-derived growth factor signalling in cardiovascular
disease. Clin Exp Pharmacol Physiol. 42:1221–1224. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lai YC, Potoka KC, Champion HC, Mora AL
and Gladwin MT: Pulmonary arterial hypertension: The clinical
syndrome. Circ Res. 115:115–130. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gomez D and Owens GK: Smooth muscle cell
phenotypic switching in atherosclerosis. Cardiovasc Res.
95:156–164. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nie X, Chen Y, Tan J, Dai Y, Mao W, Qin G,
Ye S, Sun J, Yang Z and Chen J: MicroRNA-221-3p promotes pulmonary
artery smooth muscle cells proliferation by targeting AXIN2 during
pulmonary arterial hypertension. Vascul Pharmacol. 116:24–35. 2019.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu X, Murphy TC, Nanes MS and Hart CM:
PPAR{gamma} regulates hypoxia-induced Nox4 expression in human
pulmonary artery smooth muscle cells through NF-{kappa}B. Am J
Physiol Lung Cell Mol Physiol. 299:L559–L566. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shimoda LA and Laurie SS: Vascular
remodeling in pulmonary hypertension. J Mol Med (Berl). 91:297–309.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang H, Liu Y, Yan L, Wang S, Zhang M, Ma
C, Zheng X, Chen H and Zhu D: Long noncoding RNA Hoxaas3
contributes to hypoxia-induced pulmonary artery smooth muscle cell
proliferation. Cardiovasc Res. 115:647–657. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang D, Xu H, Wu B, Jiang S, Pan H, Wang R
and Chen J: Long noncoding RNA MALAT1 sponges miR1243p.1/KLF5 to
promote pulmonary vascular remodeling and cell cycle progression of
pulmonary artery hypertension. Int J Mol Med. 44:871–884.
2019.PubMed/NCBI
|
9
|
Yang L, Liang H, Shen L, Guan Z and Meng
X: lncRNA Tug1 involves in the pulmonary vascular remodeling in
mice with hypoxic pulmonary hypertension via the
microRNA-374c-mediated Foxc1. Life Sci. 237:1167692019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Feng Y, Gao L, Cui G and Cao Y: lncRNA
NEAT1 facilitates pancreatic cancer growth and metastasis through
stabilizing ELF3 mRNA. Am J Cancer Res. 10:237–248. 2020.PubMed/NCBI
|
11
|
Yan L, Zhang Z, Yin X and Li Y: lncRNA
NEAT1 facilitates cell proliferation, invasion and migration by
regulating CBX7 and RTCB in breast cancer. Onco Targets Ther.
13:2449–2458. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chen LM, Niu YD, Xiao M, Li XJ and Lin H:
lncRNA NEAT1 regulated cell proliferation, invasion, migration and
apoptosis by targeting has-miR-376b-3p/SULF1 axis in non-small cell
lung cancer. Eur Rev Med Pharmacol Sci. 24:4810–4821.
2020.PubMed/NCBI
|
13
|
Wang S, Du H and Sun P: Long noncoding RNA
NEAT1 contributes to the tumorigenesis of colorectal cancer through
regulating SLC38A1 expression by sponging miR-138. Cancer Biother
Radiopharm. Jul 17–2020.(Epub ahead of print). doi:
10.1089/cbr.2020.3608. View Article : Google Scholar
|
14
|
Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu
F, Kang X, Osman I, Hu G, Bunting KM, et al: Long noncoding RNA
NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for
phenotypic switching of vascular smooth muscle cells. Proc Natl
Acad Sci USA. 115:E8660–E8667. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li Q and Zhou X and Zhou X: Downregulation
of miR98 contributes to hypoxic pulmonary hypertension by targeting
ALK1. Mol Med Rep. 20:2167–2176. 2019.PubMed/NCBI
|
16
|
Zhu TT, Zhang WF, Yin YL, Liu YH, Song P,
Xu J, Zhang MX and Li P: MicroRNA-140-5p targeting tumor necrosis
factor-alpha prevents pulmonary arterial hypertension. J Cell
Physiol. 234:9535–9550. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Sun L, Lin P, Chen Y, Yu H, Ren S, Wang J,
Zhao L and Du G: miR-182-3p/Myadm contribute to pulmonary artery
hypertension vascular remodeling via a KLF4/p21-dependent
mechanism. Theranostics. 10:5581–5599. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Humbert M, Sitbon O and Simonneau G:
Treatment of pulmonary arterial hypertension. N Engl J Med.
351:1425–1436. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ghaleb AM and Yang VW: Kruppel-like factor
4 (KLF4): What we currently know. Gene. 611:27–37. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sun D, Li Q, Ding D, Li X, Xie M, Xu Y and
Liu X: Role of Kruppel-like factor 4 in cigarette smoke-induced
pulmonary vascular remodeling. Am J Transl Res. 10:581–591.
2018.PubMed/NCBI
|
21
|
Liang S, Yu H, Chen X, Shen T, Cui Z, Si
G, Zhang JT, Cheng Y, Jia S, Song S, et al: PDGF-BB/KLF4/VEGF
signaling axis in pulmonary artery endothelial cell angiogenesis.
Cell Physiol Biochem. 41:2333–2349. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng F, Liu H, Chen A, Xia Q, Zhao Y, Jin
X and Huang J: miR-148-3p and miR-152-3p synergistically regulate
prostate cancer progression via repressing KLF4. J Cell Biochem.
120:17228–17239. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao L, Han T, Li Y, Sun J, Zhang S, Liu
Y, Shan B, Zheng D and Shi J: The lncRNA SNHG5/miR-32 axis
regulates gastric cancer cell proliferation and migration by
targeting KLF4. FASEB J. 31:893–903. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhai F, Cao C, Zhang L and Zhang J:
miR-543 promotes colorectal cancer proliferation and metastasis by
targeting KLF4. Oncotarget. 8:59246–59256. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cardano M, Tribioli C and Prosperi E:
Targeting proliferating cell nuclear antigen (PCNA) as an effective
strategy to inhibit tumor cell proliferation. Curr Cancer Drug
Targets. 20:240–252. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu DM, Deng SH, Liu T, Han R, Zhang T and
Xu Y: TGF-β-mediated exosomal lnc-MMP2-2 regulates migration and
invasion of lung cancer cells to the vasculature by promoting MMP2
expression. Cancer Med. 7:5118–5129. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu MM, Deng HY and Li HH: MicroRNA-27a
regulates angiotensin II-induced vascular smooth muscle cell
proliferation and migration by targeting α-smooth muscle-actin in
vitro. Biochem Biophys Res Commun. 509:973–977. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shi S, Liu XL and Li HB: Downregulation of
caspase-3 alleviates mycoplasma pneumoniae-induced apoptosis in
alveolar epithelial cells. Mol Med Rep. 16:9601–9606. 2017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Archer SL, Weir EK and Wilkins MR: Basic
science of pulmonary arterial hypertension for clinicians: New
concepts and experimental therapies. Circulation. 121:2045–2066.
2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sun Z, Liu Y, Yu F, Xu Y, Yanli L and Liu
N: Long non-coding RNA and mRNA profile analysis of metformin to
reverse the pulmonary hypertension vascular remodeling induced by
monocrotaline. Biomed Pharmacother. 115:1089332019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Qi L, Liu F, Zhang F, Zhang S, Lv LY, Bi Y
and Yu Y: lncRNA NEAT1 competes against let-7a to contribute to
non-small cell lung cancer proliferation and metastasis. Biomed
Pharmacother. 103:1507–1515. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu PF, Wang Y, Lv W, Kou D, Hu HL, Guo SS
and Zhao YJ: lncRNA NEAT1/miR-1224/KLF3 contributes to cell
proliferation, apoptosis and invasion in lung cancer. Eur Rev Med
Pharmacol Sci. 23:8403–8410. 2019.PubMed/NCBI
|
34
|
Ma F, Lei YY, Ding MG, Luo LH, Xie YC and
Liu XL: lncRNA NEAT1 interacted with DNMT1 to regulate malignant
phenotype of cancer cell and cytotoxic T cell infiltration via
epigenetic inhibition of p53, cGAS, and STING in lung cancer. Front
Genet. 11:2502020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Li X, Ye S and Lu Y: Long non-coding RNA
NEAT1 overexpression associates with increased exacerbation risk,
severity, and inflammation, as well as decreased lung function
through the interaction with microRNA-124 in asthma. J Clin Lab
Anal. 34:e230232020.PubMed/NCBI
|
36
|
Ming X, Duan W and Yi W: Long non-coding
RNA NEAT1 predicts elevated chronic obstructive pulmonary disease
(COPD) susceptibility and acute exacerbation risk, and correlates
with higher disease severity, inflammation, and lower miR-193a in
COPD patients. Int J Clin Exp Pathol. 12:2837–2848. 2019.PubMed/NCBI
|
37
|
Chen H, Ma Q, Zhang J, Meng Y, Pan L and
Tian H: miR-106b-5p modulates acute pulmonary embolism via NOR1 in
pulmonary artery smooth muscle cells. Int J Mol Med. 45:1525–1533.
2020.PubMed/NCBI
|
38
|
Li W, Pan T, Jiang W and Zhao H:
HCG18/miR-34a-5p/HMMR axis accelerates the progression of lung
adenocarcinoma. Biomed Pharmacother. 129:1102172020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Luo S, Shen M, Chen H, Li W and Chen C:
Long noncoding RNA TP73AS1 accelerates the progression and
cisplatin resistance of nonsmall cell lung cancer by upregulating
the expression of TRIM29 via competitively targeting microRNA34a5p.
Mol Med Rep. 22:3822–3832. 2020.PubMed/NCBI
|
40
|
Wang P, Xu J, Hou Z, Wang F, Song Y, Wang
J, Zhu H and Jin H: miRNA-34a promotes proliferation of human
pulmonary artery smooth muscle cells by targeting PDGFRA. Cell
Prolif. 49:484–493. 2016. View Article : Google Scholar : PubMed/NCBI
|
41
|
Shankman LS, Gomez D, Cherepanova OA,
Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene
ES, Straub AC, et al: KLF4-dependent phenotypic modulation of
smooth muscle cells has a key role in atherosclerotic plaque
pathogenesis. Nat Med. 21:628–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Salmon M, Johnston WF, Woo A, Pope NH, Su
G, Upchurch GR Jr, Owens GK and Ailawadi G: KLF4 regulates
abdominal aortic aneurysm morphology and deletion attenuates
aneurysm formation. Circulation. 128 (11 Suppl 1):S163–S174. 2013.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Sheikh AQ, Misra A, Rosas IO, Adams RH and
Greif DM: Smooth muscle cell progenitors are primed to muscularize
in pulmonary hypertension. Sci Transl Med. 7:308ra1592015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Sheikh AQ, Saddouk FZ, Ntokou A, Mazurek R
and Greif DM: Cell autonomous and non-cell autonomous regulation of
SMC progenitors in pulmonary hypertension. Cell Rep. 23:1152–1165.
2018. View Article : Google Scholar : PubMed/NCBI
|