1
|
Xu B, Liu J, Xiang X, Liu S, Zhong P, Xie
F, Mou T and Lai L: Expression of miRNA-143 in pancreatic cancer
and its clinical significance. Cancer Biother Radiopharm.
33:373–379. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yu Z, Zhao S, Wang L, Wang J and Zhou J:
MiRNA-339-5p plays an important role in invasion and migration of
pancreatic cancer cells. Med Sci Monit. 25:7509–7517. 2019.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Du W, Lei C, Wang Y, Ding Y and Tian P:
LINC01232 sponges multiple miRNAs and its clinical significance in
pancreatic adenocarcinoma diagnosis and prognosis. Technol Cancer
Res Treat. 20:15330338209885252021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang C, Huang Y, Zhang J and Fang Y:
MiRNA-339-5p suppresses the malignant development of gastric cancer
via targeting ALKBH1. Exp Mol Pathol. 115:1044492020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hessmann E, Buchholz SM, Demir IE, Singh
SK, Gress TM, Ellenrieder V and Neesse A: Microenvironmental
determinants of pancreatic cancer. Physiol Rev. 100:1707–1751.
2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Leinwand J and Miller G: Regulation and
modulation of antitumor immunity in pancreatic cancer. Nat Immunol.
21:1152–1159. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Liang H, Tang Y, Zhang H and Zhang C:
MiR-32-5p regulates radiosensitization, migration and invasion of
colorectal cancer cells by targeting TOB1 gene. Onco Targets Ther.
12:9651–9661. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Du B, Zhang P, Tan Z and Xu J: MiR-1202
suppresses hepatocellular carcinoma cells migration and invasion by
targeting cyclin dependent kinase 14. Biomed Pharmacother.
96:1246–1252. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zeng S, Liu S, Feng J, Gao J and Xue F:
MicroRNA-32 promotes ovarian cancer cell proliferation and motility
by targeting SMG1. Oncol Lett. 20:733–741. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Ye T, Zhang N, Wu W, Yang B, Wang J, Huang
W and Tang D: SNHG14 promotes the tumorigenesis and metastasis of
colorectal cancer through miR-32-5p/SKIL axis. In Vitro Cell Dev
Biol Anim. 55:812–820. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang M, Sun Y, Xu J, Lu J, Wang K, Yang
DR, Yang G, Li G and Chang C: Preclinical studies using miR-32-5p
to suppress clear cell renal cell carcinoma metastasis via altering
the miR-32-5p/TR4/HGF/Met signaling. Int J Cancer. 143:100–112.
2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu YJ, Zhou HG, Chen LH, Qu DC, Wang CJ,
Xia ZY and Zheng JH: MiR-32-5p regulates the proliferation and
metastasis of cervical cancer cells by targeting HOXB8. Eur Rev Med
Pharmacol Sci. 23:87–95. 2019.PubMed/NCBI
|
13
|
Nguyen JT, Ray C, Fox AL, Mendonça DB, Kim
JK and Krebsbach PH: Mammalian EAK-7 activates alternative mTOR
signaling to regulate cell proliferation and migration. Sci Adv.
4:eaao58382018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nagase T, Kikuno R, Nakayama M, Hirosawa M
and Ohara O: Prediction of the coding sequences of unidentified
human genes. XVIII. The complete sequences of 100 new cDNA clones
from brain which code for large proteins in vitro. DNA Res.
7:273–281. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schröder B, Wrocklage C, Pan C, Jäger R,
Kösters B, Schäfer H, Elsässer HP, Mann M and Hasilik A: Integral
and associated lysosomal membrane proteins. Traffic. 8:1676–1686.
2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Nguyen JT, Haidar FS, Fox AL, Ray C,
Mendonça DB, Kim JK and Krebsbach PH: mEAK-7 forms an alternative
mTOR complex with DNA-PKcs in human cancer. iScience. 17:190–207.
2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Riou P, Saffroy R, Comoy J, Gross-Goupil
M, Thiéry JP, Emile JF, Azoulay D, Piatier-Tonneau D, Lemoine A and
Debuire B: Investigation in liver tissues and cell lines of the
transcription of 13 genes mapping to the 16q24 region that are
frequently deleted in hepatocellular carcinoma. Clin Cancer Res.
8:3178–3186. 2002.PubMed/NCBI
|
18
|
Ellsworth RE, Field LA, Love B, Kane JL,
Hooke JA and Shriver CD: Differential gene expression in primary
breast tumors associated with lymph node metastasis. Int J Breast
Cancer. 2011:1427632011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mendonça DB, Nguyen JT, Haidar F, Fox AL,
Ray C, Amatullah H, Liu F, Kim JK and Krebsbach PH:
MicroRNA-1911-3p targets mEAK-7 to suppress mTOR signaling in human
lung cancer cells. Heliyon. 6:e057342020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao ZQ, Wang JF, Chen DH, Ma XS, Wu Y,
Tang Z and Dang XW: Long non-coding RNA GAS5 suppresses pancreatic
cancer metastasis through modulating miR-32-5p/PTEN axis. Cell
Biosci. 7:662017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cao J, Yang J, Ramachandran V, Arumugam T,
Deng DF, Li ZS, Xu LM and Logsdon CD: TM4SF1 regulates pancreatic
cancer migration and invasion in vitro and in vivo. Cell Physiol
Biochem. 39:740–750. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Xu Q, Zong L, Chen X, Jiang Z, Nan L, Li
J, Duan W, Lei J, Zhang L, Ma J, et al: Resveratrol in the
treatment of pancreatic cancer. Ann N Y Acad Sci. 1348:10–19. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Cao L, Chen X, Xiao X, Ma Q and Li W:
Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and
migration of pancreatic cancer cells via suppression of the ERK and
p38 MAPK signaling pathways. Int J Oncol. 49:735–743. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Koay EJ, Amer AM, Baio FE, Ondari AO and
Fleming JB: Toward stratification of patients with pancreatic
cancer: Past lessons from traditional approaches and future
applications with physical biomarkers. Cancer Lett. 381:237–243.
2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Sabater L, Muñoz E, Roselló S, Dorcaratto
D, Garcés-Albir M, Huerta M, Roda D, Gómez-Mateo MC,
Ferrández-Izquierdo A, Darder A and Cervantes A: Borderline
resectable pancreatic cancer. Challenges and controversies. Cancer
Treat Rev. 68:124–135. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hartwig W, Werner J, Jäger D, Debus J and
Büchler MW: Improvement of surgical results for pancreatic cancer.
Lancet Oncol. 14:e476–e485. 2013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kamisawa T, Wood LD, Itoi T and Takaori K:
Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Qian B, Wei L, Yang Z, He Q, Chen H, Wang
A, Yang D, Li Q, Li J, Zheng S and Fu W: Hic-5 in pancreatic
stellate cells affects proliferation, apoptosis, migration,
invasion of pancreatic cancer cells and postoperative survival time
of pancreatic cancer. Biomed Pharmacother. 121:1093552020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Middleton G, Palmer DH, Greenhalf W,
Ghaneh P, Jackson R, Cox T, Evans A, Shaw VE, Wadsley J, Valle JW,
et al: Vandetanib plus gemcitabine versus placebo plus gemcitabine
in locally advanced or metastatic pancreatic carcinoma (ViP): A
prospective, randomised, double-blind, multicentre phase 2 trial.
Lancet Oncol. 18:486–499. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hartwig W, Vollmer CM, Fingerhut A, Yeo
CJ, Neoptolemos JP, Adham M, Andrén-Sandberg A, Asbun HJ, Bassi C,
Bockhorn M, et al: Extended pancreatectomy in pancreatic ductal
adenocarcinoma: Definition and consensus of the International Study
Group for Pancreatic Surgery (ISGPS). Surgery. 156:1–14. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao
L and Pei H: miR-135b-5p Promotes migration, invasion and EMT of
pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother.
96:1341–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Daniel R, Wu Q, Williams V, Clark G,
Guruli G and Zehner Z: A Panel of MicroRNAs as diagnostic
biomarkers for the identification of prostate cancer. Int J Mol
Sci. 18:12812017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang R, Huang Z, Qian C, Wang M, Zheng Y,
Jiang R and Yu C: LncRNA WEE2-AS1 promotes proliferation and
inhibits apoptosis in triple negative breast cancer cells via
regulating miR-32-5p/TOB1 axis. Biochem Biophys Res Commun.
526:1005–1012. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Cao XM: Role of miR-337-3p and its target
Rap1A in modulating proliferation, invasion, migration and
apoptosis of cervical cancer cells. Cancer Biomark. 24:257–267.
2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Ji H, Sang M, Liu F, Ai N and Geng C:
MiR-124 regulates EMT based on ZEB2 target to inhibit invasion and
metastasis in triple-negative breast cancer. Pathol Res Pract.
215:697–704. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu J, Bian T, Feng J, Qian L, Zhang J,
Jiang D, Zhang Q, Li X, Liu Y and Shi J: MiR-335 inhibited cell
proliferation of lung cancer cells by target Tra2β. Cancer Sci.
109:289–296. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Cannell IG, Kong YW and Bushell M: How do
microRNAs regulate gene expression? Biochem Soc Trans. 36((Pt 6)):
1224–1231. 2008. View Article : Google Scholar : PubMed/NCBI
|