1
|
Kelly HA, Siebert D, Hammond R, Leydon J,
Kiely P and Maskill W: The age-specific prevalence of human
parvovirus immunity in Victoria, Australia compared with other
parts of the world. Epidemiol Infect. 124:449–457. 2000. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cotmore SF, McKie VC, Anderson LJ, Astell
CR and Tattersall P: Identification of the major structural and
nonstructural proteins encoded by human parvovirus B19 and mapping
of their genes by procaryotic expression of isolated genomic
fragments. J Virol. 60:548–557. 1986. View Article : Google Scholar : PubMed/NCBI
|
3
|
Nüesch JPF, Corbau R, Tattersall P and
Rommelaere J: Biochemical activities of minute virus of mice
nonstructural protein NS1 Are modulated in vitro by the
phosphorylation state of the polypeptide. J Virol. 72:8002–8012.
1998. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tewary SK, Zhao H, Deng X, Qiu J and Tang
L: The human parvovirus B19 non-structural protein 1 N-terminal
domain specifically binds to the origin of replication in the viral
DNA. Virology. 449:297–303. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Moffatt S, Yaegashi N, Tada K, Tanaka N
and Sugamura K: Human parvovirus B19 nonstructural (NS1) protein
induces apoptosis in erythroid lineage cells. J Virol.
72:3018–3028. 1998. View Article : Google Scholar : PubMed/NCBI
|
6
|
Fu Y, Ishii KK, Munakata Y, Saitoh T, Kaku
M and Sasaki T: Regulation of tumor necrosis factor alpha promoter
by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J
Virol. 76:5395–5403. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weigel-Kelley KA, Yoder MC and Srivastava
A: Recombinant human parvovirus B19 vectors: Erythrocyte P antigen
is necessary but not sufficient for successful transduction of
human hematopoietic cells. J Virol. 75:4110–4116. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kurtzman GJ, Cohen BJ, Field AM, Oseas R,
Blaese RM and Young NS: Immune response to B19 parvovirus and an
antibody defect in persistent viral infection. J Clin Invest.
84:1114–1123. 1989. View Article : Google Scholar : PubMed/NCBI
|
9
|
Anderson S, Momoeda M, Kawase M, Kajigaya
S and Young NS: Peptides derived from the unique region of B19
parvovirus minor capsid protein elicit neutralizing antibodies in
rabbits. Virology. 206:626–632. 1995. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mahrholdt H, Wagner A, Deluigi CC, Kispert
E, Hager S, Meinhardt G, Vogelsberg H, Fritz P, Dippon J, Bock CT,
et al: Presentation, patterns of myocardial damage, and clinical
course of viral myocarditis. Circulation. 114:1581–1590. 2006.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Bogomolovas J, Šimoliūnas E, Rinkūnaitė I,
Smalinskaitė L, Podkopajev A, Bironaitė D, Weis CA, Marx A,
Bukelskienė V, Gretz N, et al: A novel murine model of parvovirus
associated dilated cardiomyopathy induced by immunization with
VP1-unique region of parvovirus B19. Biomed Res Int.
2016:16271842016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hatakka A, Klein J, He R, Piper J, Tam E
and Walkty A: Acute hepatitis as a manifestation of parvovirus B19
infection. J Clin Microbiol. 49:3422–3424. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Komatsuda A, Ohtani H, Nimura T, Yamaguchi
A, Wakui H, Imai H and Miura AB: Endocapillary proliferative
glomerulonephritis in a patient with parvovirus B19 infection. Am J
Kidney Dis. 36:851–854. 2000. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ferrari SM, Fallahi P, Antonelli A and
Benvenga S: Environmental issues in thyroid diseases. Front
Endocrinol (Lausanne). 8:502017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Bozzola E, Krzysztofiak A and Cortis E:
Neurological impairment and arthritis in an immunocompetent child
with human parvovirus B19 chronic infection. Infez Med. 18:187–190.
2010.PubMed/NCBI
|
16
|
Hobbs JA and Adamson-Small LA: Parvovirus
and thyroid cancer. Semin Oncol. 42:304–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Page C, François C, Goëb V and Duverlie G:
Human parvovirus B19 and autoimmune diseases. Review of the
literature and pathophysiological hypotheses. J Clin Virol.
72:69–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pankuweit S, Moll R, Baandrup U, Portig I,
Hufnagel G and Maisch B: Prevalence of the parvovirus B19 genome in
endomyocardial biopsy specimens. Hum Pathol. 34:497–503. 2003.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Pankuweit S, Lamparter S, Schoppet M and
Maisch B: Parvovirus B19 genome in endomyocardial biopsy specimen.
Circulation. 109:e1792004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tschöpe C, Bock CT, Kasner M, Noutsias M,
Westermann D, Schwimmbeck PL, Pauschinger M, Poller WC, Kühl U,
Kandolf R and Schultheiss HP: High prevalence of cardiac parvovirus
B19 infection in patients with isolated left ventricular diastolic
dysfunction. Circulation. 111:8792005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kühl U, Lassner D, Pauschinger M, Gross
UM, Seeberg B, Noutsias M, Poller W and Schultheiss HP: Prevalence
of erythrovirus genotypes in the myocardium of patients with
dilated cardiomyopathy. J Med Virol. 80:1243–1251. 2008. View Article : Google Scholar : PubMed/NCBI
|
22
|
Bültmann BD, Klingel K, Sotlar K, Bock CT,
Baba HA, Sauter M and Kandolf R: Fatal parvovirus B19-associated
myocarditis clinically mimicking ischemic heart disease: An
endothelial cell-mediated disease. Hum Pathol. 34:92–95. 2003.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Duechting A, Tschöpe C, Kaiser H,
Lamkemeyer T, Tanaka N, Aberle S, Lang F, Torresi J, Kandolf R and
Bock CT: Human parvovirus B19 NS1 protein modulates inflammatory
signaling by activation of STAT3/PIAS3 in human endothelial cells.
J Virol. 82:7942–7952. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hii HP, Chiu CC, Lin DW, Shi YF, Hsu TC
and Tzang BS: Selective activation of inflammation factors by human
parvovirus B19 and human bocavirus VP1 unique region on H9c2
cardiomyocyte. Mol Med Rep. 18:4072–4078. 2018.PubMed/NCBI
|
25
|
Nie X, Zhang G, Xu D, Sun X, Li Z, Li X,
Zhang X, He F and Li Y: The VP1-unique region of parvovirus B19
induces myocardial injury in mice. Scand J Infect Dis. 42:121–128.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tzang BS, Lin TM, Tsai CC, Hsu JD, Yang LC
and Hsu TC: Increased cardiac injury in NZB/W F1 mice received
antibody against human parvovirus B19 VP1 unique region protein.
Mol Immunol. 48:1518–1524. 2011. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen DY, Chen YM, Tzang BS, Lan JL and Hsu
TC: Th17-related cytokines in systemic lupus erythematosus patients
with dilated cardiomyopathies: A possible linkage to parvovirus B19
infection. PLoS One. 9:e1138892014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tsai CC, Chiu CC, Hsu JD, Hsu HS, Tzang BS
and Hsu TC: Human parvovirus B19 NS1 protein aggravates liver
injury in NZB/W F1 mice. PLoS One. 8:e597242013. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lin CY, Chiu CC, Cheng J, Lin CY, Shi YF,
Tsai CC, Tzang BS and Hsu TC: Antigenicity analysis of human
parvovirus B19-VP1u protein in the induction of anti-phospholipid
syndrome. Virulence. 9:208–216. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakashima I, Ota F, Kobayashi T, Kato O
and Kato N: The effect of antigen doses and time intervals between
antigen injections on secondary, tertiary and quaternary antibody
responses. Establishment of hyperimmunization with bovine serum
albumin in mice treated with capsular polysaccharide of Klebsiella
pneumoniae. Immunology. 26:443–454. 1974.PubMed/NCBI
|
31
|
Castiglione F, Mantile F, De Berardinis P
and Prisco A: How the interval between prime and boost injection
affects the immune response in a computational model of the immune
system. Comput Math Methods Med. 2012:8423292012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hsu TC, Chiu CC, Chang SC, Chan HC, Shi
YF, Chen TY and Tzang BS: Human parvovirus B19 VP1u Protein as
inflammatory mediators induces liver injury in naïve mice.
Virulence. 7:110–118. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liu P, Sun M and Sader S: Matrix
metalloproteinases in cardiovascular disease. Can J Cardiol. 22
(Suppl B):25B–30B. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu J and Khalil RA: Matrix
metalloproteinase inhibitors as investigational and therapeutic
tools in unrestrained tissue remodeling and pathological disorders.
Prog Mol Biol Transl Sci. 148:355–420. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Kampoli AM, Tousoulis D, Papageorgiou N,
Antoniades C, Androulakis E, Tsiamis E, Latsios G and Stefanadis C:
Matrix metalloproteinases in acute coronary syndromes: Current
perspectives. Curr Top Med Chem. 12:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Fares RC, Gomes Jde A, Garzoni LR, Waghabi
MC, Saraiva RM, Medeiros NI, Oliveira-Prado R, Sangenis LH,
Chambela Mda C, de Araújo FF, et al: Matrix metalloproteinases 2
and 9 are differentially expressed in patients with indeterminate
and cardiac clinical forms of Chagas disease. Infect Immun.
81:3600–3608. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Edwards BS, Zimmerman RS and Burnett JC
Jr: Atrial natriuretic factor: Physiologic actions and implications
in congestive heart failure. Cardiovasc Drugs Ther. 1:89–100. 1987.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Michel JB, Arnal JF and Corvol P: Atrial
natriuretic factor as a marker in congestive heart failure. Horm
Res. 34:166–168. 1990. View Article : Google Scholar : PubMed/NCBI
|
39
|
Rohini A, Agrawal N, Koyani CN and Singh
R: Molecular targets and regulators of cardiac hypertrophy.
Pharmacol Res. 61:269–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Vork MM, Glatz JF and van Der Vusse GJ: On
the mechanism of long chain fatty acid transport in cardiomyocytes
as facilitated by cytoplasmic fatty acid-binding protein. J Theor
Biol. 160:207–222. 1993. View Article : Google Scholar : PubMed/NCBI
|
41
|
Crisman TS, Claffey KP, Saouaf R, Hanspal
J and Brecher P: Measurement of rat heart fatty acid binding
protein by ELISA. Tissue distribution, developmental changes and
subcellular distribution. J Mol Cell Cardiol. 19:423–431. 1987.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Sato Y, Kita T, Takatsu Y and Kimura T:
Biochemical markers of myocyte injury in heart failure. Heart.
90:1110–1113. 2004. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mair J: Progress in myocardial damage
detection: New biochemical markers for clinicians. Crit Rev Clin
Lab Sci. 34:1–66. 1997. View Article : Google Scholar : PubMed/NCBI
|
44
|
Aydin S, Ugur K, Aydin S, Sahin İ and
Yardim M: Biomarkers in acute myocardial infarction: Current
perspectives. Vasc Health Risk Manag. 15:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Levine B, Kalman J, Mayer L, Fillit HM and
Packer M: Elevated circulating levels of tumor necrosis factor in
severe chronic heart failure. N Engl J Med. 323:236–241. 1990.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Matsumori A: Molecular and immune
mechanisms in the pathogenesis of cardiomyopathy-role of viruses,
cytokines, and nitric oxide. Jpn Circ J. 61:275–291. 1997.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Miyao Y, Yasue H, Ogawa H, Misumi I,
Masuda T, Sakamoto T and Morita E: Elevated plasma interleukin-6
levels in patients with acute myocardial infarction. Am Heart J.
126:1299–1304. 1993. View Article : Google Scholar : PubMed/NCBI
|
48
|
Neumann FJ, Ott I, Gawaz M, Richardt G,
Holzapfel H, Jochum M and Schömig A: Cardiac release of cytokines
and inflammatory responses in acute myocardial infarction.
Circulation. 92:748–755. 1995. View Article : Google Scholar : PubMed/NCBI
|
49
|
Dinarello CA: The biological properties of
interleukin-1. Eur Cytokine Netw. 5:517–531. 1994.PubMed/NCBI
|
50
|
Blum A and Miller H: Role of cytokines in
heart failure. Am Heart J. 35:181–186. 1998. View Article : Google Scholar : PubMed/NCBI
|
51
|
Carter AB, Monick MM and Hunninghake GW:
Both Erk and p38 kinases are necessary for cytokine gene
transcription. Am J Respir Cell Mol Biol. 20:751–758. 1999.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Saikawa T, Anderson S, Momoeda M, Kajigaya
S and Young NS: Neutralizing linear epitopes of B19 parvovirus
cluster in the VP1 unique and VP1-VP2 junction regions. J Virol.
67:3004–3009. 1993. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zuffi E, Manaresi E, Gallinella G,
Gentilomi GA, Venturoli S, Zerbini M and Musiani M: Identification
of an immunodominant peptide in the parvovirus B19 VP1 unique
region able to elicit a long-lasting immune response in humans.
Viral Immunol. 14:151–158. 2001. View Article : Google Scholar : PubMed/NCBI
|
54
|
Leisi R, Di Tommaso C, Kempf C and Ros C:
The receptor-binding domain in the VP1u region of parvovirus B19.
Viruses. 8:612016. View Article : Google Scholar : PubMed/NCBI
|
55
|
Qiu J, Söderlund-Venermo M and Young NS:
Human parvoviruses. Clin Microbiol Rev. 30:43–113. 2017. View Article : Google Scholar : PubMed/NCBI
|