1
|
Moreira Lopes TC, Mosser DM and Gonçalves
R: Macrophage polarization in intestinal inflammation and gut
homeostasis. Inflamm Res. 69:1163–1172. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Miyajima A: Cytokines and their functions.
Nihon Rinsho. 63 (Suppl 4):S173–S177. 2005.(In Japanese).
PubMed/NCBI
|
3
|
Fidalgo P, Ahmed M, Meyer SR, Lien D,
Weinkauf J, Cardoso FS, Jackson K and Bagshaw SM: Incidence and
outcomes of acute kidney injury following orthotopic lung
transplantation: A population-based cohort study. Nephrol Dial
Transplant. 29:1702–1709. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jin W and Dong C: IL-17 cytokines in
immunity and inflammation. Emerg Microbes Infect. 2:e602013.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Tomashefski JF Jr: Pulmonary pathology of
acute respiratory distress syndrome. Clin Chest Med. 21:435–466.
2000. View Article : Google Scholar : PubMed/NCBI
|
6
|
Chen H, Bai C and Wang X: The value of the
lipopolysaccharide-induced acute lung injury model in respiratory
medicine. Expert Rev Respir Med. 4:773–783. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li Y, Huang J, Foley NM, Xu Y, Li YP, Pan
J, Redmond HP, Wang JH and Wang J: B7H3 ameliorates LPS-induced
acute lung injury via attenuation of neutrophil migration and
infiltration. Sci Rep. 6:312842016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L,
Peng C and Li Y: Phillygenin inhibits LPS-induced activation and
inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. J
Ethnopharmacol. 248:1123612020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Du B, Zhang L, Sun Y, Zhang G, Yao J,
Jiang M, Pan L and Sun C: Phillygenin exhibits anti-inflammatory
activity through modulating multiple cellular behaviors of mouse
lymphocytes. Immunopharmacol Immunotoxicol. 41:76–85. 2019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Li H, Chen M, Yang Z, Wang Q, Wang J, Jin
D, Yang X, Chen F, Zhou X and Luo K: Phillygenin, a MELK Inhibitor,
inhibits cell survival and Epithelial-Mesenchymal transition in
pancreatic cancer cells. Onco Targets Ther. 13:2833–2842. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
He J, Wei W, Yang Q and Wang Y:
Phillygenin exerts in vitro and in vivo antitumor effects in
drug-resistant human esophageal cancer cells by inducing
mitochondrial-mediated apoptosis, ROS generation, and inhibition of
the nuclear factor kappa B NF-kappaB signalling pathway. Med Sci
Monit. 25:739–745. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zinter MS, Delucchi KL, Kong MY, Orwoll
BE, Spicer AS, Lim MJ, Alkhouli MF, Ratiu AE, McKenzie AV,
McQuillen PS, et al: Early plasma matrix metalloproteinase
profiles. A novel pathway in pediatric acute respiratory distress
syndrome. Am J Respir Crit Care Med. 199:181–189. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kong MY, Gaggar A, Li Y, Winkler M,
Blalock JE and Clancy JP: Matrix metalloproteinase activity in
pediatric acute lung injury. Int J Med Sci. 6:9–17. 2009.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Kumar H, Jo MJ, Choi H, Muttigi MS, Shon
S, Kim BJ, Lee SH and Han IB: Matrix metalloproteinase-8 inhibition
prevents disruption of blood-spinal cord barrier and attenuates
inflammation in rat model of spinal cord injury. Mol Neurobiol.
55:2577–2590. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee EJ, Park JS, Lee YY, Kim DY, Kang JL
and Kim HS: Anti-inflammatory and anti-oxidant mechanisms of an
MMP-8 inhibitor in lipoteichoic acid-stimulated rat primary
astrocytes: Involvement of NF-κB, Nrf2, and PPAR-γ signaling
pathways. J Neuroinflammation. 15:3262018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Cheng K, Yang A, Hu X, Zhu D and Liu K:
Curcumin attenuates pulmonary inflammation in lipopolysaccharide
induced acute lung injury in neonatal rat model by activating
peroxisome proliferator-activated receptor γ (PPARγ) Pathway. Med
Sci Monit. 24:1178–1184. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen C, Zhang Z, Tan F, Meng F, Lai L, Chi
X and Zhu Q: Stabilizing mast cells improves acute lung injury
after orthotopic liver transplantation via promotion of apoptosis
in polymorphonuclear neutrophils. Am J Physiol Lung Cell Mol
Physiol. 320:L266–L275. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhou M, Yu S, Hong B, Li J, Han H and Qie
G: Antibiotics control in aquaculture requires more than
antibiotic-free feeds: A tilapia farming case. Environ Pollut.
268:1158542021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Dong Z, Lu X, Tong X, Dong Y, Tang L and
Liu M: Forsythiae fructus: A review on its phytochemistry, quality
control, pharmacology and pharmacokinetics. Molecules. 22:14662017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Jia J, Zhang F, Li Z, Qin X and Zhang L:
Comparison of fruits of forsythia suspensa at two different
maturation stages by NMR-based metabolomics. Molecules.
20:10065–10081. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Cao J, Shao SY, Zhang X, Yuan X, Feng ZM,
Jiang JS, Yang YN and Zhang PC: Two new lignans from the fruits of
Forsythia suspensa. J Asian Nat Prod Res. 22:418–424. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Ko HC, Wei BL and Chiou WF: Dual
regulatory effect of plant extracts of Forsythia suspense on RANTES
and MCP-1 secretion in influenza A virus-infected human bronchial
epithelial cells. J Ethnopharmacol. 102:418–423. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Guo N, Gai QY, Jiao J, Wang W, Zu YG and
Fu YJ: Antibacterial activity of fructus forsythia essential oil
and the application of EO-Loaded nanoparticles to food-borne
pathogens. Foods. 5:732016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Song W, Wu J, Yu L and Peng Z: Evaluation
of the pharmacokinetics and hepatoprotective effects of phillygenin
in mouse. Biomed Res Int. 2018:79643182018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hao Y, Li D and Piao X and Piao X:
Forsythia suspensa extract alleviates hypersensitivity induced by
soybean beta-conglycinin in weaned piglets. J Ethnopharmacol.
128:412–418. 2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Duan D, Zhang B, Yao J, Liu Y and Fang J:
Shikonin targets cytosolic thioredoxin reductase to induce
ROS-mediated apoptosis in human promyelocytic leukemia HL-60 cells.
Free Radic Biol Med. 70:182–193. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Solan PD, Dunsmore KE, Denenberg AG, Odoms
K, Zingarelli B and Wong HR: A novel role for matrix
metalloproteinase-8 in sepsis. Crit Care Med. 40:379–387. 2012.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhou X, Lu J, Chen D, Wang W, Cai Q, Li T
and Zhang J: Matrix metalloproteinase-8 inhibitors mitigate
sepsis-induced myocardial injury in rats. Chin Med J (Engl).
127:1530–1535. 2014.PubMed/NCBI
|
30
|
Villapol S: Roles of peroxisome
proliferator-activated receptor gamma on brain and peripheral
inflammation. Cell Mol Neurobiol. 38:121–132. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ju Z, Su M, Hong J, Kim E and Jung JH:
Anti-inflammatory effects of an optimized PPAR-γ agonist via NF-κB
pathway inhibition. Bioorg Chem. 96:1036112020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yonutas HM and Sullivan PG: Targeting PPAR
isoforms following CNS injury. Curr Drug Targets. 14:733–742. 2013.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kapadia R, Yi JH and Vemuganti R:
Mechanisms of anti-inflammatory and neuroprotective actions of
PPAR-gamma agonists. Front Biosci. 13:1813–1826. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
El Dairi R, Huuskonen P, Pasanen M and
Rysä J: Peroxisome proliferator activated receptor gamma
(PPAR-gamma) ligand pioglitazone regulated gene networks in term
human primary trophoblast cells. Reprod Toxicol. 81:99–107. 2018.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yousefnia S, Momenzadeh S, Seyed Forootan
F, Ghaedi K and Nasr Esfahani MH: The influence of peroxisome
proliferator-activated receptor γ (PPARγ) ligands on cancer cell
tumorigenicity. Gene. 649:14–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Janani C and Ranjitha Kumari BD: PPAR
gamma gene-a review. Diabetes Metab Syndr. 9:46–50. 2015.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Hashemzadeh AA, Nasoohi N, Raygan F,
Aghadavod E, Akbari E, Taghizadeh M, Memarzadeh MR and Asemi Z:
Flaxseed Oil Supplementation improve gene expression levels of
PPAR-γ, LP(a), IL-1 and TNF-α in type 2 diabetic patients with
coronary heart disease. Lipids. 52:907–915. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gurley C, Nichols J, Liu S, Phulwani NK,
Esen N and Kielian T: Microglia and astrocyte activation by
toll-like receptor ligands: Modulation by PPAR-gamma Agonists. PPAR
Res. 2008:4531202008. View Article : Google Scholar : PubMed/NCBI
|