1
|
Gomez E, Vercauteren M, Kurtz B,
Ouvrard-Pascaud A, Mulder P, Henry JP, Besnier M, Waget A, Hooft
Van Huijsduijnen R, Tremblay ML, et al: Reduction of heart failure
by pharmacological inhibition or gene deletion of protein tyrosine
phosphatase 1B. J Mol Cell Cardiol. 52:1257–1264. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Romero-Bermejo FJ, Ruiz-Bailen M,
Gil-Cebrian J and Huertos-Ranchal MJ: Sepsis-induced
cardiomyopathy. Curr Cardiol Rev. 7:163–183. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hochstadt A, Meroz Y and Landesberg G:
Myocardial dysfunction in severe sepsis and septic shock: More
questions than answers? J Cardiothorac Vasc Anesth. 25:526–535.
2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Patop IL, Wüst S and Kadener S: Past,
present and future of circRNAs. EMBO J. 38:e1008362019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P
and Wu M: CircRNA: Functions and properties of a novel potential
biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhelankin AV, Vasiliev SV, Stonogina DA,
Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov
EV and Akselrod AS: Elevated Plasma levels of circulating
extracellular miR-320a-3p in patients with paroxysmal atrial
fibrillation. Int J Mol Sci. 21:34852020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wang L, Wang HC, Chen C, Zeng JM, Wang Q,
Zheng L and Yu HD: Differential expression of plasma miR-146a in
sepsis patients compared with non-sepsis-SIRS patients. Exp Ther
Med. 5:1101–1104. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ailawadi S, Wang X, Gu H and Fan GC:
Pathologic function and therapeutic potential of exosomes in
cardiovascular disease. Biochim Biophys Acta. 1852:1–11. 2015.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Halushka PV, Goodwin AJ and Halushka MK:
Opportunities for microRNAs in the crowded field of cardiovascular
biomarkers. Annu Rev Pathol. 14:211–238. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang HJ, Zhang PJ, Chen WJ, Feng D, Jia YH
and Xie LX: Four serum microRNAs identified as diagnostic
biomarkers of sepsis. J Trauma. 73:850–854. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang HJ: Serum miRNA-574-5p: A prognostic
predictor of sepsis patients. Shock. 37:263–267. 2012. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang HJ, Deng J, Wang JY, Zhang PJ, Xin Z,
Xiao K, Feng D, Jia YH, Liu YN and Xie LX: Serum miRNA-122 levels
are related to coagulation disorders in sepsis patients. Clin Chem
Lad Med. 52:927–933. 2014.PubMed/NCBI
|
14
|
Tacke F, Roderburg C, Benz F, Cardenas DV,
Luedde M, Hippe HJ, Frey N, Vucur M, Gautheron J, Koch A, et al:
Levels of circulating miR-133a are elevated in sepsis and predict
mortality in critically ill patients. Crit Care Med. 42:1096–104.
2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dong S, Cheng Y, Yang J, Li J, Liu X, Wang
X, Wang D, Krall TJ, Delphin ES and Zhang C: MicroRNA expression
signature and the role of microRNA-21 in the early phase of acute
myocardial infarction. J Biol Chem. 284:29514–29525. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang X, Zhu H, Zhang X, Liu Y, Chen J,
Medvedovic M, Li H, Weiss MJ, Ren X and Fan GC: Loss of the
miR-144/451 cluster impairs ischaemic preconditioning-mediated
cardioprotection by targeting Rac-1. Cardiovasc Res. 94:379–390.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Li W, Dong M, Chu L, Feng L and Sun X:
MicroRNA-451 relieves inflammation in cerebral ischemia-reperfusion
via the Toll-like receptor 4/MyD88/NF-κB signaling pathway. Mol Med
Rep. 20:3043–3054. 2019.PubMed/NCBI
|
18
|
Kura B, Szeiffova Bacova B, Kalocayova B,
Sykora M and Slezak J: Oxidative stress-responsive MicroRNAs in
heart injury. Int J Mol Sci. 21:3582020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu
WT, Jegga AG and Fan GC: Synergistic effects of the GATA-4-mediated
miR-144/451 cluster in protection against simulated
ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell
Cardiol. 49:841–850. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang X, Zhang X, Ren XP, Chen J, Liu H,
Yang J, Medvedovic M, Hu Z and Fan GC: MicroRNA-494 targeting both
proapoptotic and antiapoptotic proteins protects against
ischemia/reperfusion induced cardiac injury. Circulation.
122:1308–1318. 2010. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yu Y, Gao R, Kaul Z, Li L, Kato Y, Zhang
Z, Groden J, Kaul SC and Wadhwa R: Loss-of-function screening to
identify miRNAs involved in senescence: Tumor suppressor activity
of miRNA-335 and its new arget CARF. Sci Rep. 6:301852016.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Ge C, Liu J and Dong S: miRNA-214 protects
sepsis-induced myocardial injury. Shock. 50:112–118. 2018.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Wang H, Ding Y, Li Y, Chen S,
Zhang L, Wu H, Zhou J, Duan K, Wang W, et al: N-peptide of vMIP-II
reverses paclitaxel-resistance by regulating miRNA-335 in breast
cancer. Int J Oncol. 51:918–930. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
O'Shea KM, Ananthakrishnan R, Li Q, Quadri
N, Thiagarajan D, Sreejit G, Wang L, Zirpoli H, Aranda JF, Alberts
AS, et al: The formin, DIAPH1, is a key modulator of myocardial
ischemia/reperfusion injury. EBioMedicine. 26:165–174. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Togashi Y, Shirakawa J, Okuyama T,
Yamazaki S, Kyohara M, Miyazawa A, Suzuki T, Hamada M and Terauchi
Y: Evaluation of the appropriateness of using glucometers for
measuring the blood glucose levels in mice. Sci Rep. 6:254652016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Haak BW, Prescott HC and Wiersinga WJ:
Therapeutic potential of the gut microbiota in the prevention and
treatment of sepsis. Front Immunol. 9:20422018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang SB, Lin SY, Liu M, Liu CC, Ding HH,
Sun Y, Ma C, Guo RX, Lv YY, Wu SL, et al: CircAnks1a in the spinal
cord regulates hypersensitivity in a rodent model of neuropathic
pain. Nat Commun. 10:41192019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang L, Fu J, Wang S, Cen H, Zhang L,
Mandukhail SR, Du L, Wu Q, Zhang P and Yu X: MiR-142-3p enhances
chemosensitivity of breast cancer cells and inhibits autophagy by
targeting HMGB1. Acta Pharm Sin B. 10:1036–1046. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Gao Y, Zhao H and Li Y: LncRNA MCM3AP-AS1
regulates miR-142-3p/HMGB1 to promote LPS-induced chondrocyte
apoptosis. BMC Musculoskelet Disord. 20:6052019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Liang H, Su X, Wu Q, Shan H, Lv L, Yu T,
Zhao X, Sun J, Yang R, Zhang L, et al: LncRNA 2810403D21Rik/Mirf
promotes ischemic myocardial injury by regulating autophagy through
targeting Mir26a. Autophagy. 16:1077–1091. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Huang YP, Gao FF, Wang B, Zheng FC, Zhang
YM, Chen YC, Huang ZQ, Zheng YS, Zhong SP and Shi GG: N-n-butyl
haloperidol iodide inhibits H2O2-induced
Na+/Ca2+-exchanger activation via the Na+/H+ exchanger
in rat ventricular myocytes. Drug Des Devel Ther. 8:1257–1267.
2014.PubMed/NCBI
|
33
|
Chistiakov DA, Orekhov AN and Bobryshev
YV: Cardiac-specific miRNA in cardiogenesis, heart function and
cardiac pathology (with focus on myocardial infarction). J Mol Cell
Cardiol. 94:107–121. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Bai XY, Ma Y, Ding R, Fu B, Shi S and Chen
XM: miR-335 and miR-34a Promote renal senescence by suppressing
mitochondrial antioxidative enzymes. J Am Soc Nephrol.
22:1252–1261. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu Y, Lai P, Deng J, Hao Q, Li X, Yang M,
Wang H and Dong B: Micro-RNA335-5p targeted inhibition of sKlotho
and promoted oxidativestress-mediated aging of endothelial cells.
Biomark Med. 13:457–466. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wu ZJ, Chen YF, Wang HD and Gao FH:
Expression of plasma miRNA-497 in children with sepsis-induced
myocardial injury and its clinical significance. Zhongguo Dang Dai
Er Ke Za Zhi. 20:32–36. 2018.(In Chinese). PubMed/NCBI
|
37
|
Wang SM, Liu GQ, Xian HB, Si JL, Qi SX and
Yu YP: LcRNA NEAT1 alleviates sepsis-induced myocardial injury by
regulating the TLR2/NF-κB signaling pathway. Eur Rev Med Pharmacol
Sci. 23:4898–4907. 2019.PubMed/NCBI
|
38
|
An R, Feng J, Xi C, Xu J and Sun L:
miR-146a attenuates sepsis-induced myocardial dysfunction by
suppressing IRAK1 and TRAF6 via Targeting ErbB4 Expression. Oxid
Med Cell Longev. 2018:71630572018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shang X, Li J, Yu R, Zhu P, Zhang Y, Xu J,
Chen K and Li M: Sepsis-related myocardial injury is associated
with mst1 upregulation, mitochondrial dysfunction and the
Drp1/F-actin signaling pathway. J Mol Histol. 50:91–103. 2019.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Rudiger A and Singer M: The heart in
sepsis: From basic mechanisms to clinical management. Curr Vasc
Pharmacol. 11:187–195. 2013. View Article : Google Scholar : PubMed/NCBI
|
41
|
Reinhart K, Bauer M, Riedemann NC and
Hartog CS: New approaches to sepsis: Molecular diagnostics and
biomarkers. Clin Microbiol Rev. 25:609–634. 2012. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu Y, Liu L and Zhang J: Protective role
of matrine in sepsis-associated cardiac dysfunction through
regulating the lncRNA PTENP1/miR-106b-5p axis. Biomed Pharmacother.
134:1111122021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Sluijter JP and Doevendans PA:
Sepsis-associated cardiac dysfunction is controlled by small RNA
molecules. J Mol Cell Cardiol. 97:67–69. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang H, Bei Y, Shen S, Huang P, Shi J,
Zhang J, Sun Q, Chen Y, Yang Y, Xu T, et al: miR-21-3p controls
sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol
Cell Cardiol. 94:43–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Wu N, Zhang X, Du S, Chen D and Che R:
Upregulation of miR-335 ameliorates myocardial ischemia reperfusion
injury via targeting hypoxia inducible factor 1-alpha subunit
inhibitor. Am J Transl Res. 10:4082–4094. 2018.PubMed/NCBI
|
46
|
Joulin O, Petillot P, Labalette M, Lancel
S and Neviere R: Cytokine profile of human septic shock serum
inducing cardiomyocyte contractile dysfunction. Physiol Res.
56:291–297. 2007. View Article : Google Scholar : PubMed/NCBI
|
47
|
Correia de Sousa M, Gjorgjieva M, Dolicka
D, Sobolewski C and Foti M: Deciphering miRNAs' Action through
miRNA Editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Agnelli L, Bisognin A, Todoerti K, Manzoni
M, Taiana E, Galletti S, Cutrona G, Gaffo E, Bortoluzzi S and Neri
A: Expanding the repertoire of miRNAs and miRNA-offset RNAs
expressed in multiple myeloma by small RNA deep sequencing. Blood
Cancer J. 9:212019. View Article : Google Scholar : PubMed/NCBI
|
49
|
Huang W: MicroRNAs: Biomarkers,
diagnostics, and therapeutics. Methods Mol Biol. 1617:57–67. 2017.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Moradifard S, Hoseinbeyki M, Ganji SM and
Minuchehr Z: Analysis of microRNA and gene expression profiles in
Alzheimer's disease: A Meta-analysis approach. Sci Rep. 8:47672018.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Papaioannou V, Pneumatikos I and
Maglaveras N: Association of heart rate variability and
inflammatory response in patients with cardiovascular diseases:
Current strengths and limitations. Front Physiol. 4:1742013.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Ruiz-Ortega M, Esteban V and Egido J: The
regulation of the inflammatory response through nuclear
factor-kappab pathway by angiotensin IV extends the role of the
renin angiotensin system in cardiovascular diseases. Trends
Cardiovasc Med. 17:19–25. 2007. View Article : Google Scholar : PubMed/NCBI
|
53
|
Frangogiannis NG: Pathophysiology of
myocardial infarction. Compr Physiol. 5:1841–1875. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Hanna A and Frangogiannis NG: Inflammatory
cytokines and chemokines as therapeutic targets in heart failure.
Cardiovasc Drugs Ther. 34:849–863. 2020. View Article : Google Scholar : PubMed/NCBI
|
55
|
Bartekova M, Radosinska J, Jelemensky M
and Dhalla NS: Role of cytokines and inflammation in heart function
during health and disease. Heart Fail Rev. 23:733–758. 2018.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Bai R, Yin X, Feng X, Cao Y, Wu Y, Zhu Z,
Li C, Tu P and Chai X: Corydalis hendersonii Hemsl. Protects
against myocardial injury by attenuating inflammation and fibrosis
via NF-κB and JAK2-STAT3 signaling pathways. J Ethnopharmacol.
207:174–183. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Qiu Z, He Y, Ming H, Lei S, Leng Y and Xia
ZY: Lipopolysaccharide (LPS) aggravates high glucose- and
hypoxia/reoxygenation-induced injury through activating
ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2
cardiomyocytes. J Diabetes Res. 2019:81518362019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Beutler B, Milsark IW and Cerami AC:
Passive immunization against cachectin/tumor necrosis factor
protects mice from lethal effect of endotoxin. J Immunol. 181:7–9.
2008.PubMed/NCBI
|
59
|
Gao XL, Li JQ, Dong YT, Cheng EJ, Gong JN,
Qin YL, Huang YQ, Yang JJ, Wang SJ and An DD: Upregulation of
microRNA-335-5p reduces inflammatory responses by inhibiting FASN
through the activation of AMPK/ULK1 signaling pathway in a septic
mouse model. Cytokine. 110:466–478. 2018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Fadeel B, Orrenius S and Zhivotovsky B:
The potential role of apoptosis in human disease. Med Princ Pract.
9:151–163. 2000. View Article : Google Scholar
|
61
|
Kong W, Kang K, Gao Y, Liu H, Meng X, Cao
Y, Yang S, Liu W, Zhang J, Yu K and Zhao M: GTS-21 protected
against LPS-induced sepsis myocardial injury in mice through
α7nAChR. Inflammation. 41:1073–1083. 2018. View Article : Google Scholar : PubMed/NCBI
|
62
|
Wang X and Yu Y: miR-146b protect against
sepsis induced mice myocardial injury through inhibition of Notch1.
J Mol Histol. 49:411–417. 2018. View Article : Google Scholar : PubMed/NCBI
|
63
|
Meng YY, Liu Y, Hu ZF, Zhang Y, Ni J, Ma
ZG, Liao HH, Wu QQ and Tang QZ: Sanguinarine attenuates
lipopolysaccharide-induced inflammation and apoptosis by inhibiting
the TLR4/NF-κB pathway in H9c2 cardiomyocytes. Curr Med Sci.
38:204–211. 2018. View Article : Google Scholar : PubMed/NCBI
|
64
|
Falck M, Osredkar D, Wood TR, Maes E,
Flatebø T, Sabir H and Thoresen M: Neonatal systemic inflammation
induces inflammatory reactions and brain apoptosis in a
pathogen-specific manner. Neonatology. 113:212–220. 2018.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Mocanu MM and Yellon DM: PTEN, the
Achilles' heel of myocardial ischaemia/reperfusion injury? Br J
Pharmacol. 150:833–838. 2007. View Article : Google Scholar : PubMed/NCBI
|
66
|
Zhou XM, Sun R, Luo DH, Sun J, Zhang MY,
Wang MH, Yang Y, Wang HY and Mai SJ: Upregulated TRIM29 promotes
proliferation and metastasis of nasopharyngeal carcinoma via
PTEN/AKT/mTOR signal pathway. Oncotarget. 7:13634–13650. 2016.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Yang H, Kong W, He L, Zhao JJ, O'Donnell
JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ:
MicroRNA expression profiling in human ovarian cancer: miR-335
induces cell survival and cisplatin resistance by targeting PTEN
MicroRNA expression profiling in human ovarian cancer: miR-335
induces cell survival and cisplatin resistance by targeting PTEN.
Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI
|