1
|
Bousquet J, Van Cauwenberge P and Khaltaev
N; Aria Workshop Group; World Health Organization, : Allergic
rhinitis and its impact on asthma. J Allergy Clin Immunol. 108
(Suppl 1):S147–S334. 2001. View Article : Google Scholar : PubMed/NCBI
|
2
|
Maurer M and Zuberbier T: Undertreatment
of rhinitis symptoms in Europe: Findings from a cross-sectional
questionnaire survey. Allergy. 62:1057–1063. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bernstein DI, Schwartz G and Bernstein JA:
Allergic rhinitis: Mechanisms and treatment. Immunol Allergy Clin
North Am. 36:261–278. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wheatley LM and Togias A: Clinical
practice. Allergic rhinitis. N Engl J Med. 372:456–463. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Greiner AN, Hellings PW, Rotiroti G and
Scadding GK: Allergic rhinitis. Lancet. 378:2112–2122. 2011.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Han X, Krempski JW and Nadeau K: Advances
and novel developments in mechanisms of allergic inflammation.
Allergy. 75:3100–3111. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Meltzer EO: Quality of life in adults and
children with allergic rhinitis. J Allergy Clin Immunol. 108 (Suppl
1):S45–S53. 2001. View Article : Google Scholar : PubMed/NCBI
|
8
|
Schuler Iv CF and Montejo JM: Allergic
rhinitis in children and adolescents. Pediatr Clin North Am.
66:981–993. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Guerra S, Sherrill DL, Martinez FD and
Barbee RA: Rhinitis as an independent risk factor for adult-onset
asthma. J Allergy Clin Immunol. 109:419–425. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mastrorilli C, Posa D, Cipriani F and
Caffarelli C: Asthma and allergic rhinitis in childhood: what's
new. Pediatr Allergy Immunol. 27:795–803. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shaaban R, Zureik M, Soussan D, Neukirch
C, Heinrich J, Sunyer J, Wjst M, Cerveri I, Pin I, Bousquet J, et
al: Rhinitis and onset of asthma: A longitudinal population-based
study. Lancet. 372:1049–1057. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bielory L: Allergic conjunctivitis and the
impact of allergic rhinitis. Curr Allergy Asthma Rep. 10:122–134.
2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cox L: Approach to Patients with Allergic
Rhinitis: Testing and treatment. Med Clin North Am. 104:77–94.
2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Guilbert TW, Morgan WJ, Zeiger RS, Mauger
DT, Boehmer SJ, Szefler SJ, Bacharier LB, Lemanske RF Jr, Strunk
RC, Allen DB, et al: Long-term inhaled corticosteroids in preschool
children at high risk for asthma. N Engl J Med. 354:1985–1997.
2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Covar RA, Szefler SJ, Martin RJ, Sundstrom
DA, Silkoff PE, Murphy J, Young DA and Spahn JD: Relations between
exhaled nitric oxide and measures of disease activity among
children with mild-to-moderate asthma. J Pediatr. 142:469–475.
2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hutvágner G and Zamore PD: A microRNA in a
multiple-turnover RNAi enzyme complex. Science. 297:2056–2060.
2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Jinek M and Doudna JA: A three-dimensional
view of the molecular machinery of RNA interference. Nature.
457:405–412. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Coskun M, Bjerrum JT, Seidelin JB and
Nielsen OH: MicroRNAs in inflammatory bowel disease - pathogenesis,
diagnostics and therapeutics. World J Gastroenterol. 18:4629–4634.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang XH, Zhang YN and Liu Z: MicroRNA in
chronic rhinosinusitis and allergic rhinitis. Curr Allergy Asthma
Rep. 14:4152014. View Article : Google Scholar : PubMed/NCBI
|
21
|
Suojalehto H, Toskala E, Kilpeläinen M,
Majuri ML, Mitts C, Lindström I, Puustinen A, Plosila T, Sipilä J,
Wolff H, et al: MicroRNA profiles in nasal mucosa of patients with
allergic and nonallergic rhinitis and asthma. Int Forum Allergy
Rhinol. 3:612–620. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Son DJ, Jung YY, Seo YS, Park H, Lee DH,
Kim S, Roh YS, Han SB, Yoon DY and Hong JT: Interleukin-32α
inhibits endothelial inflammation, vascular smooth muscle cell
activation, and atherosclerosis by upregulating Timp3 and Reck
through suppressing microRNA-205 biogenesis. Theranostics.
7:2186–2203. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu X, Chen X and Sun T: MicroRNA-205-5p
Targets HMGB1 to suppress inflammatory responses during lung injury
after hip fracture. BioMed Res Int. 2019:73048952019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Li Q, Zhou L, Wang L, Li S, Xu G, Gu H, Li
D, Liu M, Fang L, Wang Z, et al: Bcl6 modulates innate immunity by
controlling macrophage activity and plays critical role in
experimental autoimmune encephalomyelitis. Eur J Immunol.
50:525–536. 2020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Béguelin W, Teater M, Gearhart MD, Calvo
Fernández MT, Goldstein RL, Cárdenas MG, Hatzi K, Rosen M, Shen H,
Corcoran CM, et al: EZH2 and BCL6 cooperate to assemble CBX8-BCOR
complex to repress bivalent promoters, mediate germinal center
formation and lymphomagenesis. Cancer Cell. 30:197–213. 2016.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Basso K and Dalla-Favera R: Roles of BCL6
in normal and transformed germinal center B cells. Immunol Rev.
247:172–183. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nurieva RI, Chung Y, Martinez GJ, Yang XO,
Tanaka S, Matskevitch TD, Wang YH and Dong C: Bcl6 mediates the
development of T follicular helper cells. Science. 325:1001–1005.
2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Koh B, Ulrich BJ, Nelson AS, Panangipalli
G, Kharwadkar R, Wu W, Xie MM, Fu Y, Turner MJ, Paczesny S, et al:
Bcl6 and Blimp1 reciprocally regulate ST2+ Treg-cell
development in the context of allergic airway inflammation. J
Allergy Clin Immunol. 146:1121–1136.e9. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Peng Y, Li XQ and Qiu QH: Detection of
differentially expressed gene of allergic rhinitis based on RT2
profiler PCR array. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi.
31:869–872. 2017.(In Chinese). PubMed/NCBI
|
30
|
Hiromura Y, Kishida T, Nakano H, Hama T,
Imanishi J, Hisa Y, Mazda O, et al: IL-21 administration into the
nostril alleviates murine allergic rhinitis. J Immunol.
179:7157–7165. 2007. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen D, Xiong XQ, Zang YH, Tong Y, Zhou B,
Chen Q, Li YH, Gao XY, Kang YM and Zhu GQ: BCL6 attenuates renal
inflammation via negative regulation of NLRP3 transcription. Cell
Death Dis. 8:e31562017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cho SW, Zhang YL, Ko YK, Shin JM, Lee JH,
Rhee CS and Kim DY: Intranasal Treatment With 1,
25-Dihydroxyvitamin D3 alleviates allergic rhinitis symptoms in a
mouse model. Allergy Asthma Immunol Res. 11:267–279. 2019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Kuntz C, Wunsch A, Rosch R, Autschbach F,
Windeler J and Herfarth C: Short- and long-term results after
laparoscopic vs conventional colon resection in a tumor-bearing
small animal model. Surg Endosc. 14:561–567. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Robert R, Nail S, Marot-Leblond A, Cottin
J, Miegeville M, Quenouillere S, Mahaza C and Senet JM: Adherence
of platelets to Candida species in vivo. Infect Immun. 68:570–576.
2000. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Panganiban RP, Wang Y, Howrylak J,
Chinchilli VM, Craig TJ, August A and Ishmael FT: Circulating
microRNAs as biomarkers in patients with allergic rhinitis and
asthma. J Allergy Clin Immunol. 137:1423–1432. 2016. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shaoqing Y, Ruxin Z, Guojun L, Zhiqiang Y,
Hua H, Shudong Y and Jie Z: Microarray analysis of differentially
expressed microRNAs in allergic rhinitis. Am J Rhinol Allergy.
25:e242–e246. 2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen Z, Deng Y, Li F, Xiao B, Zhou X and
Tao Z: MicroRNA-466a-3p attenuates allergic nasal inflammation in
mice by targeting GATA3. Clin Exp Immunol. 197:366–375.
2019.PubMed/NCBI
|
39
|
Xiao L, Jiang L, Hu Q and Li Y:
MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in
Murine Model of Allergic Rhinitis by Targeting Nlrp3. Cell Physiol
Biochem. 42:901–912. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kim CW, Kumar S, Son DJ, Jang IH,
Griendling KK and Jo H: Prevention of abdominal aortic aneurysm by
anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused
mice. Arterioscler Thromb Vasc Biol. 34:1412–1421. 2014. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhou W, Wang J, Li Z, Li J and Sang M:
MicroRNA-205 5b inhibits HMGB1 expression in LPS-induced sepsis.
Int J Mol Med. 38:312–318. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li J, Wang B, Luo Y, Zhang Q, Bian Y and
Wang R: Resveratrol-mediated SIRT1 activation attenuates
ovalbumin-induced allergic rhinitis in mice. Mol Immunol.
122:156–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Benson M, Strannegård IL, Strannegård O
and Wennergren G: Topical steroid treatment of allergic rhinitis
decreases nasal fluid TH2 cytokines, eosinophils, eosinophil
cationic protein, and IgE but has no significant effect on
IFN-gamma, IL-1beta, TNF-alpha, or neutrophils. J Allergy Clin
Immunol. 106:307–312. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Barnes PJ: Pathophysiology of allergic
inflammation. Immunol Rev. 242:31–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Kelley N, Jeltema D, Duan Y and He Y: The
NLRP3 inflammasome: An overview of mechanisms of activation and
regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhen Y and Zhang H: NLRP3 inflammasome and
inflammatory bowel disease. Front Immunol. 10:2762019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jo EK, Kim JK, Shin DM and Sasakawa C:
Molecular mechanisms regulating NLRP3 inflammasome activation. Cell
Mol Immunol. 13:148–159. 2016. View Article : Google Scholar : PubMed/NCBI
|
48
|
Mangan MSJ, Olhava EJ, Roush WR, Seidel
HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in
inflammatory diseases. Nat Rev Drug Discov. 17:588–606. 2018.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Yang Z, Liang C, Wang T, Zou Q, Zhou M,
Cheng Y, Peng H, Ji Z, Deng Y, Liao J, et al: NLRP3 inflammasome
activation promotes the development of allergic rhinitis via
epithelium pyroptosis. Biochem Biophys Res Commun. 522:61–67. 2020.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhang W, Ba G, Tang R, Li M and Lin H:
Ameliorative effect of selective NLRP3 inflammasome inhibitor
MCC950 in an ovalbumin-induced allergic rhinitis murine model. Int
Immunopharmacol. 83:1063942020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Xiao Y, Xu W and Su W: NLRP3 inflammasome:
A likely target for the treatment of allergic diseases. Clin Exp
Allergy. 48:1080–1091. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Zhao W, Ma L, Cai C and Gong X: Caffeine
inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB
and A2aR signaling in LPS-induced THP-1 macrophages. Int J Biol
Sci. 15:1571–1581. 2019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Elliott EI and Sutterwala FS: Initiation
and perpetuation of NLRP3 inflammasome activation and assembly.
Immunol Rev. 265:35–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Sousa AR, Lane SJ, Nakhosteen JA, Lee TH
and Poston RN: Expression of interleukin-1 beta (IL-1beta) and
interleukin-1 receptor antagonist (IL-1ra) on asthmatic bronchial
epithelium. Am J Respir Crit Care Med. 154:1061–1066. 1996.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Bruchard M, Rebé C, Derangère V, Togbé D,
Ryffel B, Boidot R, Humblin E, Hamman A, Chalmin F, Berger H, et
al: The receptor NLRP3 is a transcriptional regulator of TH2
differentiation. Nat Immunol. 16:859–870. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Iwata A, Nishio K, Winn RK, Chi EY,
Henderson WR Jr and Harlan JM: A broad-spectrum caspase inhibitor
attenuates allergic airway inflammation in murine asthma model. J
Immunol. 170:3386–3391. 2003. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ben-Sasson SZ, Hu-Li J, Quiel J,
Cauchetaux S, Ratner M, Shapira I, Dinarello CA and Paul WE: IL-1
acts directly on CD4 T cells to enhance their antigen-driven
expansion and differentiation. Proc Natl Acad Sci USA.
106:7119–7124. 2009. View Article : Google Scholar : PubMed/NCBI
|
58
|
Sawant DV, Sehra S, Nguyen ET, Jadhav R,
Englert K, Shinnakasu R, Hangoc G, Broxmeyer HE, Nakayama T,
Perumal NB, et al: Bcl6 controls the Th2 inflammatory activity of
regulatory T cells by repressing Gata3 function. J Immunol.
189:4759–4769. 2012. View Article : Google Scholar : PubMed/NCBI
|
59
|
Takeda N, Arima M, Tsuruoka N, Okada S,
Hatano M, Sakamoto A, Kohno Y and Tokuhisa T: Bcl6 is a
transcriptional repressor for the IL-18 gene. J Immunol.
171:426–431. 2003. View Article : Google Scholar : PubMed/NCBI
|
60
|
Arima M, Fukuda T and Tokuhisa T: Role of
the transcriptional repressor BCL6 in allergic response and
inflammation. World Allergy Organ J. 1:115–122. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Hirota JA, Hirota SA, Warner SM,
Stefanowicz D, Shaheen F, Beck PL, Macdonald JA, Hackett TL, Sin
DD, Van Eeden S, et al: The airway epithelium nucleotide-binding
domain and leucine-rich repeat protein 3 inflammasome is activated
by urban particulate matter. J Allergy Clin Immunol.
129:1116–25.e6. 2012. View Article : Google Scholar : PubMed/NCBI
|
62
|
Birrell MA and Eltom S: The role of the
NLRP3 inflammasome in the pathogenesis of airway disease. Pharmacol
Ther. 130:364–370. 2011. View Article : Google Scholar : PubMed/NCBI
|