1
|
Atkins KM, Rawal B, Chaunzwa TL, Lamba N,
Bitterman DS, Williams CL, Kozono DE, Baldini EH, Chen AB, Nguyen
PL, et al: Cardiac radiation dose, cardiac disease, and mortality
in patients with lung cancer. J Am Coll Cardiol. 73:2976–2987.
2019. View Article : Google Scholar
|
2
|
van Nimwegen FA, Schaapveld M, Cutter DJ,
Janus CP, Krol AD, Hauptmann M, Kooijman K, Roesink J, van der
Maazen R, Darby SC, et al: Radiation dose-response relationship for
risk of coronary heart disease in survivors of hodgkin lymphoma. J
Clin Oncol. 34:235–243. 2016. View Article : Google Scholar
|
3
|
Witt JS, Jagodinsky JC, Liu Y, Yadav P,
Kuczmarska-Haas A, Yu M, Maloney JD, Ritter MA, Bassetti MF and
Baschnagel AM: Cardiac toxicity in operable esophageal cancer
patients treated with or without chemoradiation. Am J Clin Oncol.
42:662–667. 2019. View Article : Google Scholar
|
4
|
Wang H, Mu X, He H and Zhang XD: Cancer
radiosensitizers. Trends Pharmacol Sci. 39:24–48. 2018. View Article : Google Scholar
|
5
|
Zamorano JL, Lancellotti P, Rodriguez
Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ,
Lip GY, Lyon AR, et al ESC Scientific Document Group, : 2016 ESC
Position Paper on cancer treatments and cardiovascular toxicity
developed under the auspices of the ESC Committee for Practice
Guidelines: The Task Force for cancer treatments and cardiovascular
toxicity of the European Society of Cardiology (ESC). Eur Heart J.
37:2768–2801. 2016. View Article : Google Scholar
|
6
|
Schaue D and McBride WH: Opportunities and
challenges of radiotherapy for treating cancer. Nat Rev Clin Oncol.
12:527–540. 2015. View Article : Google Scholar
|
7
|
Boerma M, Sridharan V, Mao XW, Nelson GA,
Cheema AK, Koturbash I, Singh SP, Tackett AJ and Hauer-Jensen M:
Effects of ionizing radiation on the heart. Mutat Res Rev Mutat
Res. 770:319–327. 2016. View Article : Google Scholar
|
8
|
Bhattacharya S and Asaithamby A: Ionizing
radiation and heart risks. Semin Cell Dev Biol. 58:14–25. 2016.
View Article : Google Scholar
|
9
|
Wang H, Wei J, Zheng Q, Meng L, Xin Y, Yin
X and Jiang X: Radiation-induced heart disease: A review of
classification, mechanism and prevention. Int J Biol Sci.
15:2128–2138. 2019. View Article : Google Scholar
|
10
|
Raghunathan D, Khilji MI, Hassan SA and
Yusuf SW: Radiation-induced cardiovascular disease. Curr
Atheroscler Rep. 19:222017. View Article : Google Scholar
|
11
|
Yusuf SW, Venkatesulu BP, Mahadevan LS and
Krishnan S: Radiation-induced cardiovascular disease: A clinical
perspective. Front Cardiovasc Med. 4:662017. View Article : Google Scholar
|
12
|
Barjaktarovic Z, Shyla A, Azimzadeh O,
Schulz S, Haagen J, Dörr W, Sarioglu H, Atkinson MJ, Zischka H and
Tapio S: Ionising radiation induces persistent alterations in the
cardiac mitochondrial function of C57BL/6 mice 40 weeks after local
heart exposure. Radiother Oncol. 106:404–410. 2013. View Article : Google Scholar
|
13
|
Guldner L, Haddy N, Pein F, Diallo I,
Shamsaldin A, Dahan M, Lebidois J, Merlet P, Villain E, Sidi D, et
al: Radiation dose and long term risk of cardiac pathology
following radiotherapy and anthracyclin for a childhood cancer.
Radiother Oncol. 81:47–56. 2006. View Article : Google Scholar
|
14
|
Mezzaroma E, Di X, Graves P, Toldo S, Van
Tassell BW, Kannan H, Baumgarten C, Voelkel N, Gewirtz DA and
Abbate A: A mouse model of radiation-induced cardiomyopathy. Int J
Cardiol. 156:231–233. 2012. View Article : Google Scholar
|
15
|
Dreyfuss AD, Goia D, Shoniyozov K, Shewale
SV, Velalopoulou A, Mazzoni S, Avgousti H, Metzler SD, Bravo PE,
Feigenberg SJ, et al: A novel mouse model of radiation-induced
cardiac injury reveals biological and radiological biomarkers of
cardiac dysfunction with potential clinical relevance. Clin Cancer
Res. 27:2266–2276. 2021. View Article : Google Scholar
|
16
|
Zeng ZM, Xu P, Zhou S, Du HY, Jiang XL,
Cai J, Huang L and Liu AW: Positive association between heart
dosimetry parameters and a novel cardiac biomarker, solubleST-2, in
thoracic cancer chest radiation. J Clin Lab Anal. 34:e231502020.
View Article : Google Scholar
|
17
|
Adams MJ, Hardenbergh PH, Constine LS and
Lipshultz SE: Radiation-associated cardiovascular disease. Crit Rev
Oncol Hematol. 45:55–75. 2003. View Article : Google Scholar
|
18
|
Kreuzer M, Auvinen A, Cardis E, Hall J,
Jourdain JR, Laurier D, Little MP, Peters A, Raj K, Russell NS, et
al: Low-dose ionising radiation and cardiovascular diseases -
Strategies for molecular epidemiological studies in Europe. Mutat
Res Rev Mutat Res. 764:90–100. 2015. View Article : Google Scholar
|
19
|
Sayler E, Dolney D, Avery S and Koch C:
Shielding considerations for the small animal radiation research
platform (SARRP). Health Phys. 104:471–480. 2013. View Article : Google Scholar
|
20
|
Hoving S, Seemann I, Visser NL, te Poele
JA and Stewart FA: Thalidomide is not able to inhibit
radiation-induced heart disease. Int J Radiat Biol. 89:685–691.
2013. View Article : Google Scholar
|
21
|
Wang B, Wang H, Zhang M, Ji R, Wei J, Xin
Y and Jiang X: Radiation-induced myocardial fibrosis: Mechanisms
underlying its pathogenesis and therapeutic strategies. J Cell Mol
Med. 24:7717–7729. 2020. View Article : Google Scholar
|
22
|
Slezak J, Kura B, Babal P, Barancik M,
Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L,
et al: Potential markers and metabolic processes involved in the
mechanism of radiation-induced heart injury. Can J Physiol
Pharmacol. 95:1190–1203. 2017. View Article : Google Scholar
|
23
|
Azzam EI, Jay-Gerin JP and Pain D:
Ionizing radiation-induced metabolic oxidative stress and prolonged
cell injury. Cancer Lett. 327:48–60. 2012. View Article : Google Scholar
|
24
|
Zhao W and Robbins ME: Inflammation and
chronic oxidative stress in radiation-induced late normal tissue
injury: Therapeutic implications. Curr Med Chem. 16:130–143. 2009.
View Article : Google Scholar
|
25
|
Baselet B, Sonveaux P, Baatout S and Aerts
A: Pathological effects of ionizing radiation: Endothelial
activation and dysfunction. Cell Mol Life Sci. 76:699–728. 2019.
View Article : Google Scholar
|
26
|
Zhang Z, Wu S, Stenoien DL and Paša-Tolić
L: High-throughput proteomics. Annu Rev Anal Chem (Palo Alto,
Calif). 7:427–454. 2014. View Article : Google Scholar
|
27
|
Sharon D, Tilgner H, Grubert F and Snyder
M: A single-molecule long-read survey of the human transcriptome.
Nat Biotechnol. 31:1009–1014. 2013. View Article : Google Scholar
|
28
|
Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi
Z, Chambers MC, Zimmerman LJ, Shaddox KF, Kim S, et al NCI CPTAC, :
Proteogenomic characterization of human colon and rectal cancer.
Nature. 513:382–387. 2014. View Article : Google Scholar
|
29
|
Mun DG, Bhin J, Kim S, Kim H, Jung JH,
Jung Y, Jang YE, Park JM, Kim H, Jung Y, et al: Proteogenomic
characterization of human early-onset gastric cancer. Cancer Cell.
35:111–124.e10. 2019. View Article : Google Scholar
|
30
|
Li X, Wang W and Chen J: Recent progress
in mass spectrometry proteomics for biomedical research. Sci China
Life Sci. 60:1093–1113. 2017. View Article : Google Scholar
|
31
|
Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C,
Quan S, Zhang F, Sun R, Qian L, et al: Proteomic and Metabolomic
Characterization of COVID-19 Patient Sera. Cell. 182:59–72.e15.
2020. View Article : Google Scholar
|
32
|
Zeng ZM, Du HY, Xiong L, Zeng XL, Zhang P,
Cai J, Huang L and Liu AW: BRCA1 protects cardiac microvascular
endothelial cells against irradiation by regulating p21-mediated
cell cycle arrest. Life Sci. 244:1173422020. View Article : Google Scholar
|
33
|
Li J, Zhang N, Song LB, Liao WT, Jiang LL,
Gong LY, Wu J, Yuan J, Zhang HZ, Zeng MS, et al: Astrocyte elevated
gene-1 is a novel prognostic marker for breast cancer progression
and overall patient survival. Clin Cancer Res. 14:3319–3326. 2008.
View Article : Google Scholar
|
34
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar
|
35
|
Bandettini WP, Kellman P, Mancini C,
Booker OJ, Vasu S, Leung SW, Wilson JR, Shanbhag SM, Chen MY and
Arai AE: MultiContrast Delayed Enhancement (MCODE) improves
detection of subendocardial myocardial infarction by late
gadolinium enhancement cardiovascular magnetic resonance: A
clinical validation study. J Cardiovasc Magn Reson. 14:832012.
View Article : Google Scholar
|
36
|
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and
Lin CY: cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst Biol. 8 (Suppl 4):S112014. View Article : Google Scholar
|
37
|
Wang Y, Cai J, Zeng X, Chen Y, Yan W,
Ouyang Y, Xiao D, Zeng Z, Huang L and Liu A: Downregulation of
toll-like receptor 4 induces suppressive effects on hepatitis B
virus-related hepatocellular carcinoma via ERK1/2 signaling. BMC
Cancer. 15:8212015. View Article : Google Scholar
|
38
|
Azimzadeh O, Sievert W, Sarioglu H,
Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D,
Aichler M, Atkinson MJ, et al: PPAR alpha: A novel radiation target
in locally exposed Mus musculus heart revealed by quantitative
proteomics. J Proteome Res. 12:2700–2714. 2013. View Article : Google Scholar
|
39
|
Subramanian V, Seemann I, Merl-Pham J,
Hauck SM, Stewart FA, Atkinson MJ, Tapio S and Azimzadeh O: Role of
TGF beta and PPAR alpha signaling pathways in radiation response of
locally exposed heart: Integrated global transcriptomics and
proteomics analysis. J Proteome Res. 16:307–318. 2017. View Article : Google Scholar
|
40
|
Tsuchida T and Friedman SL: Mechanisms of
hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol.
14:397–411. 2017. View Article : Google Scholar
|
41
|
Zhao X, Kwan JY, Yip K, Liu PP and Liu FF:
Targeting metabolic dysregulation for fibrosis therapy. Nat Rev
Drug Discov. 19:57–75. 2020. View Article : Google Scholar
|
42
|
Meziani L, Mondini M, Petit B, Boissonnas
A, Thomas de Montpreville V, Mercier O, Vozenin MC and Deutsch E:
CSF1R inhibition prevents radiation pulmonary fibrosis by depletion
of interstitial macrophages. Eur Respir J. 51:512018. View Article : Google Scholar
|
43
|
Stoddard TJ, Varadarajan VV, Dziegielewski
PT, Boyce BJ and Justice JM: Detection of microbiota in post
radiation sinusitis. Ann Otol Rhinol Laryngol. 128:1116–1121. 2019.
View Article : Google Scholar
|
44
|
Roy S and Trinchieri G: Microbiota: A key
orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285. 2017.
View Article : Google Scholar
|
45
|
Liu LK, Ouyang W, Zhao X, Su ShF, Yang Y,
Ding WJ, Luo X, He ZX and Lu B: Pathogenesis and prevention of
radiation-induced myocardial fibrosis. Asian Pac J Cancer Prev.
18:583–587. 2017.
|
46
|
Soh J, Sugimoto S, Namba K, Miura A,
Shiotani T, Yamamoto H, Suzawa K, Shien K, Yamamoto H, Okazaki M,
et al: Chronic lung injury after trimodality therapy for locally
advanced non-small cell lung cancer. Ann Thorac Surg. 112:279–288.
2020. View Article : Google Scholar
|
47
|
Annesley SJ and Fisher PR: Mitochondria in
health and disease. Cells. 8:82019. View Article : Google Scholar
|
48
|
Khomich O, Ivanov AV and Bartosch B:
Metabolic hallmarks of hepatic stellate cells in liver fibrosis.
Cells. 9:92019. View Article : Google Scholar
|
49
|
Sabbah HN: Targeting the mitochondria in
heart failure: A translational perspective. JACC Basic Transl Sci.
5:88–106. 2020. View Article : Google Scholar
|
50
|
Gollmer J, Zirlik A and Bugger H:
Mitochondrial mechanisms in diabetic cardiomyopathy. Diabetes Metab
J. 44:33–53. 2020. View Article : Google Scholar
|
51
|
de Paz-Lugo P, Lupiáñez JA and
Meléndez-Hevia E: High glycine concentration increases collagen
synthesis by articular chondrocytes in vitro: Acute glycine
deficiency could be an important cause of osteoarthritis. Amino
Acids. 50:1357–1365. 2018. View Article : Google Scholar
|
52
|
Nishikawa T, Bellance N, Damm A, Bing H,
Zhu Z, Handa K, Yovchev MI, Sehgal V, Moss TJ, Oertel M, et al: A
switch in the source of ATP production and a loss in capacity to
perform glycolysis are hallmarks of hepatocyte failure in advance
liver disease. J Hepatol. 60:1203–1211. 2014. View Article : Google Scholar
|
53
|
Zhao YD, Yin L, Archer S, Lu C, Zhao G,
Yao Y, Wu L, Hsin M, Waddell TK, Keshavjee S, et al: Metabolic
heterogeneity of idiopathic pulmonary fibrosis: A metabolomic
study. BMJ Open Respir Res. 4:e0001832017. View Article : Google Scholar
|
54
|
Im MJ, Freshwater MF and Hoopes JE: Enzyme
activities in granulation tissue: Energy for collagen synthesis. J
Surg Res. 20:121–125. 1976. View Article : Google Scholar
|
55
|
Wang SP, Yang H, Wu JW, Gauthier N, Fukao
T and Mitchell GA: Metabolism as a tool for understanding human
brain evolution: Lipid energy metabolism as an example. J Hum Evol.
77:41–49. 2014. View Article : Google Scholar
|
56
|
Vidali S, Aminzadeh S, Lambert B,
Rutherford T, Sperl W, Kofler B and Feichtinger RG: Mitochondria:
The ketogenic diet - A metabolism-based therapy. Int J Biochem Cell
Biol. 63:55–59. 2015. View Article : Google Scholar
|
57
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.
View Article : Google Scholar
|
58
|
du Plessis SS, Agarwal A, Mohanty G and
van der Linde M: Oxidative phosphorylation versus glycolysis: What
fuel do spermatozoa use? Asian J Androl. 17:230–235. 2015.
View Article : Google Scholar
|
59
|
Vincent AS, Phan TT, Mukhopadhyay A, Lim
HY, Halliwell B and Wong KP: Human skin keloid fibroblasts display
bioenergetics of cancer cells. J Invest Dermatol. 128:702–709.
2008. View Article : Google Scholar
|
60
|
Liu Y, Li Y, Zhang T, Zhao H, Fan S, Cai
X, Liu Y, Li Z, Gao S, Li Y, et al: Analysis of biomarkers and
metabolic pathways in patients with unstable angina based on ultra
high performance liquid chromatography quadrupole time of flight
mass spectrometry. Mol Med Rep. 22:3862–3872. 2020.
|
61
|
Michel M, Dubowy KO, Zlamy M, Karall D,
Adam MG, Entenmann A, Keller MA, Koch J, Odri Komazec I, Geiger R,
et al: Targeted metabolomic analysis of serum phospholipid and
acylcarnitine in the adult Fontan patient with a dominant left
ventricle. Ther Adv Chronic Dis. Apr 27–2020.(Epub ahead of print).
doi: 10.1177/2040622320916031. View Article : Google Scholar
|
62
|
Ma CX, Zhao XK and Li YD: New therapeutic
insights into radiation-induced myocardial fibrosis. Ther Adv
Chronic Dis. Aug 8–2019.(Epub ahead of print). doi:
10.1177/2040622319868383. View Article : Google Scholar
|
63
|
Del Re DP, Amgalan D, Linkermann A, Liu Q
and Kitsis RN: Fundamental mechanisms of regulated cell death and
implications for heart disease. Physiol Rev. 99:1765–1817. 2019.
View Article : Google Scholar
|
64
|
Vásquez-Trincado C, García-Carvajal I,
Pennanen C, Parra V, Hill JA, Rothermel BA and Lavandero S:
Mitochondrial dynamics, mitophagy and cardiovascular disease. J
Physiol. 594:509–525. 2016. View Article : Google Scholar
|
65
|
Sridharan V, Thomas CJ, Cao M, Melnyk SB,
Pavliv O, Joseph J, Singh SP, Sharma S, Moros EG and Boerma M:
Effects of local irradiation combined with sunitinib on early
remodeling, mitochondria, and oxidative stress in the rat heart.
Radiother Oncol. 119:259–264. 2016. View Article : Google Scholar
|
66
|
Sridharan V, Seawright JW, Antonawich FJ,
Garnett M, Cao M, Singh P and Boerma M: Late Administration of a
Palladium Lipoic Acid Complex (POLY-MVA) modifies cardiac
mitochondria but not functional or structural manifestations of
radiation-induced heart disease in a rat model. Radiat Res.
187:361–366. 2017. View Article : Google Scholar
|
67
|
Dai C, He L, Ma B and Chen T: Facile
nanolization strategy for therapeutic ganoderma lucidum spore oil
to achieve enhanced protection against radiation-induced heart
disease. Small. 15:e19026422019. View Article : Google Scholar
|
68
|
Schlaak RA, Frei A, SenthilKumar G, Tsaih
SW, Wells C, Mishra J, Flister MJ, Camara AKS and Bergom C:
Differences in expression of mitochondrial complexes due to genetic
variants may alter sensitivity to radiation-induced cardiac
dysfunction. Front Cardiovasc Med. 7:232020. View Article : Google Scholar
|
69
|
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi
Z, Xiaocheng W, Hong Z and Liang S: Oxidative stress
radiation-induced cardiotoxicity. Oxid Med Cell Longev. Mar
1–2020.(Epub ahead of print). doi: 10.1155/2020/3579143. View Article : Google Scholar
|