Open Access

Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues

  • Authors:
    • Peng Xu
    • Yali Yi
    • Yijing Luo
    • Zhicheng Liu
    • Yilin Xu
    • Jing Cai
    • Zhimin Zeng
    • Anwen Liu
  • View Affiliations

  • Published online on: October 11, 2021     https://doi.org/10.3892/mmr.2021.12482
  • Article Number: 842
  • Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Thoracic radiotherapy increases the risk of radiation‑induced heart damage (RIHD); however, the molecular mechanisms underlying these changes are not fully understood. The aim of the present study was to investigate the effects of radiation on the mouse heart using high‑throughput proteomics. Male C57BL/6J mice were used to establish a model of RIHD by exposing the entire heart to 16 Gy high‑energy X‑rays, and cardiac injuries were verified using a cardiac echocardiogram, as well as by measuring serum brain natriuretic peptide levels and conducting H&E and Masson staining 5 months after irradiation. Proteomics experiments were performed using the heart apex of 5‑month irradiated mice and control mice that underwent sham‑irradiation. The most significantly differentially expressed proteins were enriched in 'cardiac fibrosis' and 'energy metabolism'. Next, the cardiac fibrosis and changes to energy metabolism were confirmed using immunohistochemistry staining and western blotting. Extracellular matrix proteins, such as collagen type 1 α 1 chain, collagen type III α 1 chain, vimentin and CCCTC‑binding factor, along with metabolism‑related proteins, such as fatty acid synthase and solute carrier family 25 member 1, exhibited upregulated expression following exposure to ionizing radiation. Additionally, the myocardial mitochondria inner membranes were injured, along with a decrease in ATP levels and the accumulation of lactic acid in the irradiated heart tissues. These results suggest that the high doses of ionizing radiation used lead to structural remodeling, functional injury and fibrotic alterations in the mouse heart. Radiation‑induced mitochondrial damage and metabolic alterations of the cardiac tissue may thus be a pathogenic mechanism of RIHD.
View Figures
View References

Related Articles

Journal Cover

December-2021
Volume 24 Issue 6

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z and Liu A: Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep 24: 842, 2021.
APA
Xu, P., Yi, Y., Luo, Y., Liu, Z., Xu, Y., Cai, J. ... Liu, A. (2021). Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Molecular Medicine Reports, 24, 842. https://doi.org/10.3892/mmr.2021.12482
MLA
Xu, P., Yi, Y., Luo, Y., Liu, Z., Xu, Y., Cai, J., Zeng, Z., Liu, A."Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues". Molecular Medicine Reports 24.6 (2021): 842.
Chicago
Xu, P., Yi, Y., Luo, Y., Liu, Z., Xu, Y., Cai, J., Zeng, Z., Liu, A."Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues". Molecular Medicine Reports 24, no. 6 (2021): 842. https://doi.org/10.3892/mmr.2021.12482