HIF‑1α in cerebral ischemia (Review)
- Authors:
- Peiliang Dong
- Qingna Li
- Hua Han
-
Affiliations: Institute of Traditional Chinese Medicine, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China - Published online on: December 7, 2021 https://doi.org/10.3892/mmr.2021.12557
- Article Number: 41
-
Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
WHO publishes definitive atlas on global heart disease and stroke epidemic. Indian J Med Sci. 58:405–406. 2004.PubMed/NCBI | |
Cramer SC, Wolf SL, Adams HP Jr, Chen D, Dromerick AW, Dunning K, Ellerbe C, Grande A, Janis S, Lansberg MG, et al: Stroke recovery and rehabilitation research: Issues, opportunities, and the national institutes of health strokeNet. Stroke. 48:813–819. 2017. View Article : Google Scholar : PubMed/NCBI | |
GBD 2016 Causes of Death Collaborators, . Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the global burden of disease study 2016. Lancet. 390:1151–1210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jianrong S, Yanjun Z, Chen Y and Jianwen X: DUSP14 rescues cerebral ischemia/reperfusion (IR) injury by reducing inflammation and apoptosis via the activation of Nrf-2. Biochem Biophys Res Commun. 509:713–721. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Kawabori M and Yenari MA: Innate inflammatory responses in stroke: Mechanisms and potential therapeutic targets. Curr Med Chem. 21:2076–2097. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tobin MK, Bonds JA, Minshall RD, Pelligrino DA, Testai FD and Lazarov O: Neurogenesis and inflammation after ischemic stroke: What is known and where we go from here. J Cereb Blood Flow Metab. 34:1573–1584. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Sun X, Xie Y, Zan J and Tan W: Isosteviol sodium protects against permanent cerebral ischemia injury in mice via inhibition of NF-κB-mediated inflammatory and apoptotic responses. J Stroke Cerebrovasc Dis. 26:2603–2614. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ishrat T, Sayeed I, Atif F and Stein DG: Effects of progesterone administration on infarct volume and functional deficits following permanent focal cerebral ischemia in rats. Brain Res. 1257:94–101. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hazell AS: Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem Int. 50:941–953. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rothman SM and Olney JW: Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol. 19:105–111. 1986. View Article : Google Scholar : PubMed/NCBI | |
Lo EH, Dalkara T and Moskowitz MA: Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 4:399–415. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wardlaw JM, Murray V, Berge E, del Zoppo G, Sandercock P, Lindley RL and Cohen G: Recombinant tissue plasminogen activator for acute ischaemic stroke: An updated systematic review and meta-analysis. Lancet. 379:2364–2372. 2012. View Article : Google Scholar : PubMed/NCBI | |
Prabhakar NR and Semenza GL: Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 92:967–1003. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kruschewski M, Foitzik T, Perez-Cantó A, Hübotter A and Buhr HJ: Changes of colonic mucosal microcirculation and histology in two colitis models: An experimental study using intravital microscopy and a new histological scoring system. Dig Dis Sci. 46:2336–2343. 2001. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL and Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 12:5447–5454. 1992. View Article : Google Scholar : PubMed/NCBI | |
Harris AL: Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wilkins SE, Abboud MI, Hancock RL and Schofield CJ: Targeting protein-protein interactions in the HIF system. ChemMedChem. 11:773–786. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pereira T, Zheng X and Poellinger L: Degradation of the hypoxia-inducible factor 1alpha: Where does it happen? Cell Cycle. 5:2720–2722. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lee JW, Bae SH, Jeong JW, Kim SH and Kim KW: Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med. 36:1–12. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rabie T and Marti HH: Brain protection by erythropoietin: A manifold task. Physiology (Bethesda). 23:263–274. 2008.PubMed/NCBI | |
Schito L and Semenza GL: Hypoxia-inducible factors: Master regulators of cancer progression. Trends Cancer. 2:758–770. 2016. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI | |
Sharp FR and Bernaudin M: HIF1 and oxygen sensing in the brain. Nat Rev Neurosci. 5:437–448. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ke XJ and Zhang JJ: Changes in HIF-1α, VEGF, NGF and BDNF levels in cerebrospinal fluid and their relationship with cognitive impairment in patients with cerebral infarction. J Huazhong Univ Sci Technolog Med Sci. 33:433–437. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kuang S, Zheng J, Yang H, Li S, Duan S, Shen Y, Ji C, Gan J, Xu XW and Li J: Structure insight of GSDMD reveals the basis of GSDMD autoinhibition in cell pyroptosis. Proc Natl Acad Sci USA. 114:10642–10647. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chavez JC and LaManna JC: Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: Potential role of insulin-like growth factor-1. J Neurosci. 22:8922–8931. 2002. View Article : Google Scholar : PubMed/NCBI | |
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Sharma G and Mishra V: Hypoxia inducible factor-1: Its potential role in cerebral ischemia. Cell Mol Neurobiol. 32:491–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Jiang L, Zhu H, Zhang L and Wang T: Hypoxia-inducible factor-1α and erythropoietin expression in the hippocampus of neonatal rats following hypoxia-ischemia. J Nanosci Nanotechnol. 14:5614–5619. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Saliba P, Reischl S, Marti HH and Kunze R: Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner. Neurobiol Dis. 91:221–235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa H, Tajiri N, Shinozuka K, Vasconcellos J, Kaneko Y, Lee HJ, Mimura O, Dezawa M, Kim SU and Borlongan CV: Vasculogenesis in experimental stroke after human cerebral endothelial cell transplantation. Stroke. 44:3473–3481. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ran H, Xiao Y, Wang H, Chen Y, Chen W and Xu X: Knockdown of HIF-1α impairs post-ischemic vascular reconstruction in the brain via deficient homing and sprouting bmEPCs. Brain Pathol. 28:860–874. 2018. View Article : Google Scholar : PubMed/NCBI | |
Borlongan CV, Glover LE, Tajiri N, Kaneko Y and Freeman TB: The great migration of bone marrow-derived stem cells toward the ischemic brain: Therapeutic implications for stroke and other neurological disorders. Prog Neurobiol. 95:213–228. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hayakawa K, Pham LD, Katusic ZS, Arai K and Lo EH: Astrocytic high-mobility group box 1 promotes endothelial progenitor cell-mediated neurovascular remodeling during stroke recovery. Proc Natl Acad Sci USA. 109:7505–7510. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD and Carroll JE: The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 6:632005. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZG, Zhang L, Jiang Q and Chopp M: Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 90:284–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Eilken HM and Adams RH: Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 22:617–625. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jakobsson L, Franco CA, Bentley K, Collins RT, Ponsioen B, Aspalter IM, Rosewell I, Busse M, Thurston G, Medvinsky A, et al: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol. 12:943–953. 2010. View Article : Google Scholar : PubMed/NCBI | |
Phng LK, Stanchi F and Gerhardt H: Filopodia are dispensable for endothelial tip cell guidance. Development. 140:4031–4040. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aspalter IM, Gordon E, Dubrac A, Ragab A, Narloch J, Vizán P, Geudens I, Collins RT, Franco CA, Abrahams CL, et al: Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 6:72642015. View Article : Google Scholar : PubMed/NCBI | |
Fantin A, Vieira JM, Plein A, Denti L, Fruttiger M, Pollard JW and Ruhrberg C: NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood. 121:2352–2362. 2013. View Article : Google Scholar : PubMed/NCBI | |
Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG and Walenkamp AM: A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer. 49:219–230. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Lin G, Luan Y, Ding J, Li PC, Zhao Z, Qian C, Liu G, Ju S and Teng GJ: HIF-prolyl hydroxylase 2 silencing using siRNA delivered by MRI-visible nanoparticles improves therapy efficacy of transplanted EPCs for ischemic stroke. Biomaterials. 197:229–243. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin CH, Chiu L, Lee HT, Chiang CW, Liu SP, Hsu YH, Lin SZ, Hsu CY, Hsieh CH and Shyu WC: PACAP38/PAC1 signaling induces bone marrow-derived cells homing to ischemic brain. Stem Cells. 33:1153–1172. 2015. View Article : Google Scholar : PubMed/NCBI | |
Muller WA: Mechanisms of transendothelial migration of leukocytes. Circ Res. 105:223–230. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ferrero E, Belloni D, Contini P, Foglieni C, Ferrero ME, Fabbri M, Poggi A and Zocchi MR: Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+ circulating precursors: Evidence for PECAM-1 involvement through Akt/PKB activation. Blood. 101:186–193. 2003. View Article : Google Scholar : PubMed/NCBI | |
Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM and Silberstein LE: Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells. 24:1030–1041. 2006. View Article : Google Scholar : PubMed/NCBI | |
Torzicky M, Viznerova P, Richter S, Strobl H, Scheinecker C, Foedinger D and Riedl E: Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) and CD99 are critical in lymphatic transmigration of human dendritic cells. J Invest Dermatol. 132:1149–1157. 2012. View Article : Google Scholar : PubMed/NCBI | |
de la Rosa G, Longo N, Rodríguez-Fernández JL, Puig-Kroger A, Pineda A, Corbí AL and Sánchez-Mateos P: Migration of human blood dendritic cells across endothelial cell monolayers: Adhesion molecules and chemokines involved in subset-specific transmigration. J Leukoc Biol. 73:639–649. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kaneider NC, Kaser A, Dunzendorfer S, Tilg H and Wiedermann CJ: Sphingosine kinase-dependent migration of immature dendritic cells in response to neurotoxic prion protein fragment. J Virol. 77:5535–5539. 2003. View Article : Google Scholar : PubMed/NCBI | |
Muller WA: Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24:327–334. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhang CC, Steele AD, Lindquist S and Lodish HF: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA. 103:2184–2189. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gnecchi M and Melo LG: Bone marrow-derived mesenchymal stem cells: Isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol. 482:281–294. 2009. View Article : Google Scholar : PubMed/NCBI | |
Miles DK and Kernie SG: Hypoxic-ischemic brain injury activates early hippocampal stem/progenitor cells to replace vulnerable neuroblasts. Hippocampus. 18:793–806. 2008. View Article : Google Scholar : PubMed/NCBI | |
Santilli G, Lamorte G, Carlessi L, Ferrari D, Rota Nodari L, Binda E, Delia D, Vescovi AL and De Filippis L: Mild hypoxia enhances proliferation and multipotency of human neural stem cells. PLoS One. 5:e85752010. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen X, Shi Q and Song T: Cell proliferation in ependymal/subventricular zone and nNOS expression following focal cerebral ischemia in adult rats. Neurol Res. 28:91–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bürgers HF, Schelshorn DW, Wagner W, Kuschinsky W and Maurer MH: Acute anoxia stimulates proliferation in adult neural stem cells from the rat brain. Exp Brain Res. 188:33–43. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park KI, Hack MA, Ourednik J, Yandava B, Flax JD, Stieg PE, Gullans S, Jensen FE, Sidman RL, Ourednik V and Snyder EY: Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: Evidence from the effect of hypoxia-ischemia in the CNS on clonal ‘reporter’ neural stem cells. Exp Neurol. 199:156–178. 2006. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Zhang J, Chen X, Wan J, Wang J, Zhang P and Liu Y: Hypoxia stimulates neural stem cell proliferation by increasing HIF-1α expression and activating Wnt/β-catenin signaling. Cell Mol Biol (Noisy-le-grand). 63:12–19. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ciani L and Salinas PC: WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci. 6:351–362. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee SM, Tole S, Grove E and McMahon AP: A local Wnt-3a signal is required for development of the mammalian hippocampus. Development. 127:457–467. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR and Gage FH: Wnt signalling regulates adult hippocampal neurogenesis. Nature. 437:1370–1375. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cheng YL, Park JS, Manzanero S, Choi Y, Baik SH, Okun E, Gelderblom M, Fann DY, Magnus T, Launikonis BS, et al: Evidence that collaboration between HIF-1α and Notch-1 promotes neuronal cell death in ischemic stroke. Neurobiol Dis. 62:286–295. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Zhao TZ, Zou YJ, Zhang JH and Feng H: Hypoxia induces autophagic cell death through hypoxia-inducible factor 1α in microglia. PLoS One. 9:e965092014. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, He W and Geng L: Neuroprotective mechanism of HIF-1α overexpression in the early stage of acute cerebral infarction in rats. Exp Ther Med. 12:391–395. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI | |
Panchision DM: The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol. 220:562–568. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jiang Q, Geng X, Warren J, Eugene Paul Cosky E, Kaura S, Stone C, Li F and Ding Y: Hypoxia inducible factor-1α (HIF-1α) mediates NLRP3 inflammasome-dependent-pyroptotic and apoptotic cell death following schemic stroke. Neuroscience. 448:126–139. 2020. View Article : Google Scholar : PubMed/NCBI | |
An P, Xie J, Qiu S, Liu Y, Wang J, Xiu X, Li L and Tang M: Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 232:1165992019. View Article : Google Scholar : PubMed/NCBI | |
Tang B, Tang WJ, Tang YH and Deng CQ: Astragaloside IV attenuates cerebral ischemia and reperfusion injury and reduces activation of NLRP3 inflammasome and NF-κB phosphorylation in rats following a transient middle cerebral artery occlusion. Sheng Li Xue Bao. 71:424–430. 2019.(In Chinese). PubMed/NCBI | |
Davis BK, Wen H and Ting JP: The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 29:707–735. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M: HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model. Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI | |
Zhu T, Zhan L, Liang D, Hu J, Lu Z, Zhu X, Sun W, Liu L and Xu E: Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia. J Neuropathol Exp Neurol. 73:975–986. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang ML, Tao T, Xu J, Liu Z and Xu D: Antiapoptotic effect of gene therapy with recombinant adenovirus vector containing hypoxia-inducible factor-1α after cerebral ischemia and reperfusion in rats. Chin Med J (Engl). 130:1700–1706. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo Y: Role of HIF-1a in regulating autophagic cell survival during cerebral ischemia reperfusion in rats. Oncotarget. 8:98482–98494. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Wang RH and Wang H, Long CL and Wang H: Brain protection against ischemic stroke using choline as a new molecular bypass treatment. Acta Pharmacol Sin. 36:1416–1425. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou B, Yan T, Wu H, Feng J, Chen H, Gao C, Peng T, Yang D and Shen J: Peroxynitrite enhances self-renewal, proliferation and neuronal differentiation of neural stem/progenitor cells through activating HIF-1α and Wnt/β-catenin signaling pathway. Free Radic Biol Med. 117:158–167. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen SF, Pan MX, Tang JC, Cheng J, Zhao D, Zhang Y, Liao HB, Liu R, Zhuang Y, Zhang ZF, et al: Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol Brain. 13:632020. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Liao XY, Pan MX, Tang JC, Chen SF, Zhang Y, Lu PX, Lu LJ, Zou YY, Qin XP, et al: Glycine exhibits neuroprotective effects in ischemic stroke in rats through the inhibition of M1 microglial polarization via the NF-κB p65/Hif-1α signaling pathway. J Immunol. 202:1704–1714. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jeyaseelan K, Lim KY and Armugam A: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 39:959–966. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang Y and Yang GY: MicroRNAs in cerebral ischemia. Stroke Res Treat. 2013:2765402013.PubMed/NCBI | |
Sun JJ, Zhang XY, Qin XD, Zhang J, Wang MX and Yang JB: miRNA-210 induces the apoptosis of neuronal cells of rats with cerebral ischemia through activating HIF-1α-VEGF pathway. Eur Rev Med Pharmacol Sci. 23:2548–2554. 2019.PubMed/NCBI | |
Li LJ, Huang Q, Zhang N, Wang GB and Liu YH: miR-376b-5p regulates angiogenesis in cerebral ischemia. Mol Med Rep. 10:527–535. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhang Y, Zhang X, Zhang Y, Jiang Y, Xiao X, Tan J, Yuan W and Liu Y: MicroRNA-433 inhibits the proliferation and migration of HUVECs and neurons by targeting hypoxia-inducible factor 1 alpha. J Mol Neurosci. 61:135–143. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu FJ, Kaur P, Karolina DS, Sepramaniam S, Armugam A, Wong PT and Jeyaseelan K: miR-335 regulates Hif-1α to reduce cell death in both mouse cell line and rat ischemic models. PLoS One. 10:e01284322015. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Wang L, Bai L, Du Y, Liu L and Chen X: Effects of inhibition of miR-155-5p in neural stem cell subarachnoid transplant on rats with cerebral infarction. Hum Gene Ther Methods. 30:184–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li H, Burnett JC and Rossi JJ: The role of antisense long noncoding RNA in small RNA-triggered gene activation. RNA. 20:1916–1928. 2014. View Article : Google Scholar : PubMed/NCBI | |
PLOS Genetics Staff, . Correction: fMiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 12:e10058252016. View Article : Google Scholar : PubMed/NCBI | |
Chen ZH, Wang WT, Huang W, Fang K, Sun YM, Liu SR, Luo XQ and Chen YQ: The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ. 24:212–224. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P, Ansari KI, Nakano I, Chiocca EA, Godlewski J and Bronisz A: The Long Non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep. 15:2500–2509. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wang M, Mei Z, Cao W, Yang Y, Wang Y and Wen A: lncRNAs HIF1A-AS2 facilitates the up-regulation of HIF-1α by sponging to miR-153-3p, whereby promoting angiogenesis in HUVECs in hypoxia. Biomed Pharmacother. 96:165–172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fani L, Bos D, Mutlu U, Portegies MLP, Zonneveld HI, Koudstaal PJ, Vernooij MW, Ikram MA and Ikram MK: Global brain perfusion and the risk of transient ischemic attack and ischemic stroke: The rotterdam study. J Am Heart Assoc. 8:e0115652019. View Article : Google Scholar : PubMed/NCBI | |
Tsai MJ, Kuo YM and Tsai YH: Transient ischemic attack induced by melted solid lipid microparticles protects rat brains from permanent focal ischemia. Neuroscience. 275:136–145. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sprick JD, Mallet RT, Przyklenk K and Rickards CA: Ischaemic and hypoxic conditioning: Potential for protection of vital organs. Exp Physiol. 104:278–294. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rojas DR, Tegeder I, Kuner R and Agarwal N: Hypoxia-inducible factor 1α protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med. 96:1395–1405. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez-Reynoso S, Leal-Cortés C, Portilla-de Buen E and López-De la Torre SP: Ischemic preconditioning preserves liver energy charge and function on hepatic ischemia/reperfusion injury in rats. Arch Med Res. 49:373–380. 2018. View Article : Google Scholar : PubMed/NCBI | |
Meng SS, Xu XP, Chang W, Lu ZH, Huang LL, Xu JY, Liu L, Qiu HB, Yang Y and Guo FM: LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Stem Cell Res Ther. 9:2802018. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lu F, Zhuang L, Yang S, Kong Y, Tan W, Gong Z and Zhan S: Combined preconditioning with hypoxia and GYKI-52466 protects rats from cerebral ischemic injury by HIF-1α/eNOS pathway. Am J Transl Res. 9:5308–5319. 2017.PubMed/NCBI | |
Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan D, Lu M and Hu Z: Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α. Aging (Albany NY). 12:10931–10950. 2020. View Article : Google Scholar : PubMed/NCBI | |
Murry CE, Jennings RB and Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation. 74:1124–1136. 1986. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Tae HJ, Kim IH, Cho JH, Lee TK, Park JH, Ahn JH, Choi SY, Bai HC, Shin BN, et al: Roles of HIF-1α, VEGF, and NF-κB in ischemic preconditioning-mediated neuroprotection of hippocampal CA1 pyramidal neurons against a subsequent transient cerebral ischemia. Mol Neurobiol. 54:6984–6998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hirayama Y and Koizumi S: Hypoxia-independent mechanisms of HIF-1α expression in astrocytes after ischemic preconditioning. Glia. 65:523–530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Liu C, Du X, Liu M, Ji X, Du H and Zhao H: Hypoxia inducible factor 1α plays a key role in remote ischemia preconditioning against stroke by modulating inflammatory responses in rats. J Am Heart Assoc. 7:e0075892018. View Article : Google Scholar : PubMed/NCBI | |
Liu ZJ, Chen C, Li XR, Ran YY, Xu T, Zhang Y, Geng XK, Zhang Y, Du HS, Leak RK, et al: Remote ischemic preconditioning-mediated neuroprotection against stroke is associated with significant alterations in peripheral immune responses. CNS Neurosci Ther. 22:43–52. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xia M, Ding Q, Zhang Z and Feng Q: Remote limb ischemic preconditioning protects rats against cerebral ischemia via HIF-1α/AMPK/HSP70 pathway. Cell Mol Neurobiol. 37:1105–1114. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fath DM, Kong X, Liang D, Lin Z, Chou A, Jiang Y, Fang J, Caro J and Sang N: Histone deacetylase inhibitors repress the transactivation potential of hypoxia-inducible factors independently of direct acetylation of HIF-alpha. J Biol Chem. 281:13612–13619. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang D, Kong X and Sang N: Effects of histone deacetylase inhibitors on HIF-1. Cell Cycle. 5:2430–2435. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Yin C, Lao T, Liang D, He D, Wang C and Sang N: AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle. 14:2520–2536. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, Jing Z, Chen J, Zigmond MJ and Gao Y: Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Prog Neurobiol. 114:58–83. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Wu Y and Jia J: Exercise preconditioning and brain ischemic tolerance. Neuroscience. 177:170–176. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding YH, Ding Y, Li J, Bessert DA and Rafols JA: Exercise pre-conditioning strengthens brain microvascular integrity in a rat stroke model. Neurol Res. 28:184–189. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ding YH, Li J, Yao WX, Rafols JA, Clark JC and Ding Y: Exercise preconditioning upregulates cerebral integrins and enhances cerebrovascular integrity in ischemic rats. Acta Neuropathol. 112:74–84. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kang KA, Seong H, Jin HB, Park J, Lee J, Jeon JY and Kim YJ: The effect of treadmill exercise on ischemic neuronal injury in the stroke animal model: Potentiation of cerebral vascular integrity. J Korean Acad Nurs. 41:197–203. 2011.(In Korean). View Article : Google Scholar : PubMed/NCBI | |
Otsuka S, Sakakima H, Terashi T, Takada S, Nakanishi K and Kikuchi K: Preconditioning exercise reduces brain damage and neuronal apoptosis through enhanced endogenous 14-3-3γ after focal brain ischemia in rats. Brain Struct Funct. 224:727–738. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Deng W, Yuan Q and Yang H: Exercise preconditioning reduces ischemia reperfusion-induced focal cerebral infarct volume through up-regulating the expression of HIF-1α. Pak J Pharm Sci. 28 (Suppl 2):S791–S798. 2015. | |
Wang H, Niu F, Fan W, Shi J, Zhang J and Li B: Modulating effects of preconditioning exercise in the expression of ET-1 and BNP via HIF-1α in ischemically injured brain. Metab Brain Dis. 34:1299–1311. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, et al: Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 359:1317–1329. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Xu X, Yin Y, Yu S, Ren H, Xue Q and Xu X: Catalpol protects vascular structure and promotes angiogenesis in cerebral ischemic rats by targeting HIF-1α/VEGF. Phytomedicine. 78:1533002020. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Ni GX, Shi XL, Jia L and Wang YL: Astragaloside IV regulates the HIF/VEGF/Notch signaling pathway through miRNA-210 to promote angiogenesis after ischemic stroke. Restor Neurol Neurosci. 38:271–282. 2020.PubMed/NCBI | |
Hu Q, Liu L, Zhou L, Lu H, Wang J, Chen X and Wang Q: Effect of fluoxetine on HIF-1α-Netrin/VEGF cascade, angiogenesis and neuroprotection in a rat model of transient middle cerebral artery occlusion. Exp Neurol. 329:1133122020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Zhou X, Lu H, Song M, Zhao J and Wang Q: Fluoxetine induces vascular endothelial growth factor/Netrin over-expression via the mediation of hypoxia-inducible factor 1-alpha in SH-SY5Y cells. J Neurochem. 136:1186–1195. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zou J, Fei Q, Xiao H, Wang H, Liu K, Liu M, Zhang H, Xiao X, Wang K and Wang N: VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol. 234:17690–17703. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng X, Wang H, Liu C, Zhong S, Niu X, Zhang X, Qi R, Zhao S, Zhang X, Qu H and Zhao C: Dl-3-n-butylphthalide promotes remyelination process in cerebral white matter in rats subjected to ischemic stroke. Brain Res. 1717:167–175. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Bian H, Guo L and Zhu H: Berberine preconditioning protects neurons against ischemia via sphingosine-1-phosphate and hypoxia-inducible factor-1[Formula: See text]. Am J Chin Med. 44:927–941. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ryou MG, Choudhury GR, Li W, Winters A, Yuan F, Liu R and Yang SH: Methylene blue-induced neuronal protective mechanism against hypoxia-reoxygenation stress. Neuroscience. 301:193–203. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Hong H, Zhang X, Lai W, Wang Y, Chu K, Brown J, Hong G and Chen L: Salidroside inhibits inflammation through PI3K/Akt/HIF signaling after focal cerebral ischemia in rats. Inflammation. 40:1297–1309. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Wang J and Feng J: The neuroprotective effects of curcumin are associated with the regulation of the reciprocal function between autophagy and HIF-1α in cerebral ischemia-reperfusion injury. Drug Des Devel Ther. 13:1135–1144. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saad MAE, Fahmy MIM, Al-Shorbagy M, Assaf N, Hegazy AAE and El-Yamany MF: Nateglinide exerts neuroprotective effects via downregulation of HIF-1α/TIM-3 inflammatory pathway and promotion of caveolin-1 expression in the rat's hippocampus subjected to focal cerebral ischemia/reperfusion injury. Inflammation. 43:401–416. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cheng CY, Ho TY, Hsiang CY, Tang NY, Hsieh CL, Kao ST and Lee YC: Angelica sinensis exerts angiogenic and anti-apoptotic effects against cerebral ischemia-reperfusion injury by activating p38MAPK/HIF-1[Formula: See text]/VEGF-A signaling in rats. Am J Chin Med. 45:1683–1708. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Wang N, Li J, Wang G, Seto SW, Chang D and Liang H: Ligustilide ameliorates the permeability of the blood-brain barrier model in vitro during oxygen-glucose deprivation injury through HIF/VEGF pathway. J Cardiovasc Pharmacol. 73:316–325. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen ZZ, Gong X, Guo Q, Zhao H and Wang L: Bu Yang Huan Wu decoction prevents reperfusion injury following ischemic stroke in rats via inhibition of HIF-1α, VEGF and promotion β-ENaC expression. J Ethnopharmacol. 228:70–81. 2019. View Article : Google Scholar : PubMed/NCBI |