1
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Ischemia/Reperfusion. Compr Physiol. 7:113–170. 2016.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Sakai S and Shichita T: Inflammation and
neural repair after ischemic brain injury. Neurochem Int.
130:1043162019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Jacob B, Stock D, Chan V, Colantonio A and
Cullen N: Predictors of in-hospital mortality following
hypoxic-ischemic brain injury: A population-based study. Brain Inj.
34:178–186. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Galkin A: Brain ischemia/reperfusion
injury and mitochondrial complex I damage. Biochemistry (Mosc).
84:1411–1423. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion-from mechanism to translation. Nat Med. 17:1391–1401.
2011. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Kleindorfer DO, Towfighi A, Chaturvedi S,
Cockroft KM, Gutierrez J, Lombardi-Hill D, Kamel H, Kernan WN,
Kittner SJ, Leira EC, et al: 2021 Guideline for the prevention of
stroke in patients with stroke and transient ischemic attack: A
guideline from the American heart association/American stroke
association. Stroke. 52:e364–e467. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gladstone DJ, Lindsay MP, Douketis J,
Smith EE, Dowlatshahi D, Wein T, Bourgoin A, Cox J, Falconer JB,
Graham BR, et al: Canadian stroke best practice recommendations:
Secondary prevention of stroke update 2020. Can J Neurol Sci. Jun
18–2021.(Epub ahead of print). View Article : Google Scholar
|
8
|
Pantazi E, Bejaoui M, Folch-Puy E, Adam R
and Rosello-Catafau J: Advances in treatment strategies for
ischemia reperfusion injury. Expert Opin Pharmacother. 17:169–179.
2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ibanez B, Heusch G, Ovize M and Van de
Werf F: Evolving therapies for myocardial ischemia/reperfusion
injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hausenloy DJ and Yellon DM: Myocardial
ischemia-reperfusion injury: A neglected therapeutic target. J Clin
Invest. 123:92–100. 2013. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Zuo ML, Wang AP, Song GL and Yang ZB:
MiR-652 protects rats from cerebral ischemia/reperfusion oxidative
stress injury by directly targeting NOX2. Biomed Pharmacother.
124:1098602020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xie YL, Zhang B and Jing L: MiR-125b
blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in
rat models of cerebral ischemia-reperfusion injury by targeting
p53. Neurol Res. 40:828–837. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Di Y, Lei Y, Yu F, Changfeng F, Song W and
Xuming M: MicroRNAs expression and function in cerebral ischemia
reperfusion injury. J Mol Neurosci. 53:242–250. 2014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yu Y, Du L and Zhang J: Febrile
seizure-related miR-148a-3p exerts neuroprotection by promoting the
proliferation of hippocampal neurons in children with temporal lobe
epilepsy. Dev Neurosci. 43:312–320. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu R, Peng Z, Zhang Y, Li R and Wang Y:
Upregulation of miR128 inhibits neuronal cell apoptosis following
spinal cord injury via FasL downregulation by repressing ULK1. Mol
Med Rep. 24:6672021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang HF, Wang YQ, Dou L, Gao HM, Wang B,
Luo N and Li Y: Influences of up-regulation of miR-126 on septic
inflammation and prognosis through AKT/Rac1 signaling pathway. Eur
Rev Med Pharmacol Sci. 23:2132–2138. 2019.PubMed/NCBI
|
17
|
Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y,
Li C, Chong M, Ibrahim T, Mercatali L, et al: MiR-126 and miR-126*
repress recruitment of mesenchymal stem cells and inflammatory
monocytes to inhibit breast cancer metastasis. Nat Cell Biol.
15:284–294. 2013. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Lin Q, Hou S, Dai Y, Jiang N and Lin Y:
LncRNA HOTAIR targets miR-126-5p to promote the progression of
Parkinson's disease through RAB3IP. Biol Chem. 400:1217–1228. 2019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao B, Chen X and Li H: Protective
effects of miR-126 specifically regulates Nrf2 through ischemic
postconditioning on renal ischemia/reperfusion injury in mice.
Transplant Proc. 52:392–397. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang W, Zheng Y, Wang M, Yan M, Jiang J
and Li Z: Exosomes derived miR-126 attenuates oxidative stress and
apoptosis from ischemia and reperfusion injury by targeting ERRFI1.
Gene. 690:75–80. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang
F, Xu X, Zhao LY, Yang PB, Zhang JS and Tian YF: MicroRNA-25
negatively regulates cerebral ischemia/reperfusion injury-induced
cell apoptosis through Fas/FasL pathway. J Mol Neurosci.
58:507–516. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang Y and Xu M: MiR-380-5p facilitates
NRF2 and attenuates cerebral ischemia/reperfusion injury-induced
neuronal cell death by directly targeting BACH1. Transl Neurosci.
12:210–217. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yu G, Sun W, Wang W, Le C, Liang D and
Shuai L: Overexpression of microRNA-202-3p in bone marrow
mesenchymal stem cells improves cerebral ischemia-reperfusion
injury by promoting angiogenesis and inhibiting inflammation. Aging
(Albany NY). 13:11877–11888. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Shi Y, Yi Z, Zhao P, Xu Y and Pan P:
MicroRNA-532-5p protects against cerebral ischemia-reperfusion
injury by directly targeting CXCL1. Aging (Albany NY).
13:11528–11541. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee
DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, et al:
Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic
Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI
|
27
|
Kramer MF: Stem-loop RT-qPCR for miRNAs.
Curr Protoc Mol Biol. Chapter 15: Unit 15. 10:2011.PubMed/NCBI
|
28
|
Wu Y, Song LT, Li JS, Zhu DW, Jiang SY and
Deng JY: MicroRNA-126 regulates inflammatory cytokine secretion in
human gingival fibroblasts under high glucose via targeting tumor
necrosis factor receptor associated factor 6. J Periodontol.
88:e179–e187. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shan C and Ma Y: MicroRNA-126/stromal
cell-derived factor 1/C-X-C chemokine receptor type 7 signaling
pathway promotes post-stroke angiogenesis of endothelial progenitor
cell transplantation. Mol Med Rep. 17:5300–5305. 2018.PubMed/NCBI
|
30
|
Bijkerk R, van Solingen C, de Boer HC, van
der Pol P, Khairoun M, de Bruin RG, van Oeveren-Rietdijk AM,
Lievers E, Schlagwein N, van Gijlswijk DJ, et al: Hematopoietic
microRNA-126 protects against renal ischemia/reperfusion injury by
promoting vascular integrity. J Am Soc Nephrol. 25:1710–1722. 2014.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Xiao ZH, Wang L, Gan P, He J, Yan BC and
Ding LD: Dynamic Changes in miR-126 expression in the hippocampus
and penumbra following experimental transient global and focal
cerebral ischemia-reperfusion. Neurochem Res. 45:1107–1119. 2020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Ren H, Xu Z, Guo W, Deng Z and Yu X:
Rab3IP interacts with SSX2 and enhances the invasiveness of gastric
cancer cells. Biochem Biophys Res Commun. 503:2563–2568. 2018.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Homma Y and Fukuda M: Rabin8 regulates
neurite outgrowth in both GEF activity-dependent and -independent
manners. Mol Biol Cell. 27:2107–2118. 2016. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ultanir SK, Hertz NT, Li G, Ge WP,
Burlingame AL, Pleasure SJ, Shokat KM, Jan LY and Jan YN: Chemical
genetic identification of NDR1/2 kinase substrates AAK1 and Rabin8
Uncovers their roles in dendrite arborization and spine
development. Neuron. 73:1127–1142. 2012. View Article : Google Scholar : PubMed/NCBI
|