1
|
Cortelazzo S, Ferreri A, Hoelzer D and
Ponzoni M: Lymphoblastic lymphoma. Crit Rev Oncol Hematol.
113:304–317. 2017. View Article : Google Scholar : PubMed/NCBI
|
2
|
Burkhardt B and Hermiston ML:
Lymphoblastic lymphoma in children and adolescents: Review of
current challenges and future opportunities. Br J Haematol.
185:1158–1170. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Raetz EA and Teachey DT: T-cell acute
lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program.
2016:580–588. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Leicht DT, Kausar T, Wang Z, Ferrer-Torres
D, Wang TD, Thomas DG, Lin J, Chang AC, Lin L and Beer DG: TGM2: A
cell surface marker in esophageal adenocarcinomas. J Thorac Oncol.
9:872–881. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Tovar-Vidales T, Clark AF and Wordinger
RJ: Transforming growth factor-beta2 utilizes the canonical
Smad-signaling pathway to regulate tissue transglutaminase
expression in human trabecular meshwork cells. Exp Eye Res.
93:442–451. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lai TS and Greenberg CS: TGM2 and
implications for human disease: Role of alternative splicing. Front
Biosci (Landmark Ed). 18:504–519. 2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang P, Yu D, Zhou J, Zhuang S and Jiang
T: TGM2 interference regulates the angiogenesis and apoptosis of
colorectal cancer via Wnt/β-catenin pathway. Cell Cycle.
18:1122–1134. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li C, Cai J, Ge F and Wang G: TGM2
knockdown reverses cisplatin chemoresistance in osteosarcoma. Int J
Mol Med. 42:1799–1808. 2018.PubMed/NCBI
|
9
|
Fu J, Yang QY, Sai K, Chen FR, Pang JC, Ng
HK, Kwan AL and Chen ZP: TGM2 inhibition attenuates ID1 expression
in CD44-high glioma-initiating cells. Neuro Oncol. 15:1353–1365.
2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Torres A, Pac-Sosińska M, Wiktor K,
Paszkowski T, Maciejewski R and Torres K: CD44, TGM2 and EpCAM as
novel plasma markers in endometrial cancer diagnosis. BMC Cancer.
19:4012019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang H and McCarty N: Tampering with
cancer chemoresistance by targeting the TGM2-IL6-autophagy
regulatory network. Autophagy. 13:627–628. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hunter CA and Jones SA: IL-6 as a keystone
cytokine in health and disease. Nat Immunol. 16:448–457. 2015.
View Article : Google Scholar : PubMed/NCBI
|
13
|
West AJ, Tsui V, Stylli SS, Nguyen HPT,
Morokoff AP, Kaye AH and Luwor RB: The role of interleukin-6-STAT3
signalling in glioblastoma. Oncol Lett. 16:4095–4104.
2018.PubMed/NCBI
|
14
|
Burger R: Impact of interleukin-6 in
hematological malignancies. Transfus Med Hemother. 40:336–343.
2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Heinrich PC, Behrmann I, Haan S, Hermanns
HM, Muller-Newen G and Schaper F: Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J.
374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim JH, Kim WS and Park C: Interleukin-6
mediates resistance to PI3K-pathway-targeted therapy in lymphoma.
BMC Cancer. 19:9362019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu J, Hong J, Ahn KS, Go J, Han H, Park
J, Kim D, Park H, Koh Y, Shin DY and Yoon SS: ERK-dependent IL-6
positive feedback loop mediates resistance against a combined
treatment using danusertib and BKM120 in Burkitt lymphoma cell
lines. Leuk Lymphoma. 60:2532–2540. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Etebari M, Navari M, Agostinelli C, Visani
A, Peron C, Iqbal J, Inghirami G and Piccaluga PP: Transcriptional
analysis of lennert lymphoma reveals a unique profile and
identifies novel therapeutic targets. Front Genet. 10:7802019.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Nielsen PR, Eriksen JO, Lindahl LM,
Wehkamp U, Bzorek M, Andersen G, Woetmann A, Iversen L, Ødum N,
Litman T and Gjerdrum LMR: Diagnostic two-gene classifier in
early-stage mycosis fungoides: A retrospective multicenter study. J
Invest Dermatol. 141:213–217.e5. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu G, Wang LG, Han Y and He QY:
ClusterProfiler: An R package for comparing biological themes among
gene clusters. Omics. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Gobin E, Bagwell K, Wagner J, Mysona D,
Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R and She
JX: A pan-cancer perspective of matrix metalloproteases (MMP) gene
expression profile and their diagnostic/prognostic potential. BMC
Cancer. 19:5812019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Korbecki J, Kojder K, Barczak K and
Simińska D: Hypoxia alters the expression of CC chemokines and CC
chemokine receptors in a tumor-A literature review. Int J Mol Sci.
21:56472020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mayeur-Rousse C, Guy J, Miguet L, Bouyer
S, Geneviève F, Robillard N, Solly F, Maar A, Bené MC and Mauvieux
L; GEIL (Groupe d'Etude Immunologique des Leucémies), . CD180
expression in B-cell lymphomas: A multicenter GEIL study. Cytometry
B Clin Cytom. 90:462–466. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Stempel H, Jung M, Pérez-Gómez A,
Leinders-Zufall T, Zufall F and Bufe B: Strain-specific loss of
formyl peptide receptor 3 in the murine vomeronasal and immune
systems. J Biol Chem. 291:9762–9775. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tucker RP and Chiquet-Ehrismann R: The
regulation of tenascin expression by tissue microenvironments.
Biochim Biophys Acta. 1793:888–892. 2009. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lowy CM and Oskarsson T: Tenascin C in
metastasis: A view from the invasive front. Cell Adh Migr.
9:112–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Park KS, Kim HK, Lee JH, Choi YB, Park SY,
Yang SH, Kim SY and Hong KM: Transglutaminase 2 as a cisplatin
resistance marker in non-small cell lung cancer. J Cancer Res Clin
Oncol. 136:493–502. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
He W, Sun Z and Liu Z: Silencing of TGM2
reverses epithelial to mesenchymal transition and modulates the
chemosensitivity of breast cancer to docetaxel. Exp Ther Med.
10:1413–1418. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang F, Wang L, Qu C, Chen L, Geng Y,
Cheng C, Yu S, Wang D, Yang L, Meng Z and Chen Z: Kaempferol
induces ROS-dependent apoptosis in pancreatic cancer cells via
TGM2-mediated Akt/mTOR signaling. BMC Cancer. 21:3962021.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Miyoshi N, Ishii H, Mimori K, Tanaka F,
Hitora T, Tei M, Sekimoto M, Doki Y and Mori M: TGM2 is a novel
marker for prognosis and therapeutic target in colorectal cancer.
Ann Surg Oncol. 17:967–972. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Gu C, Cai J, Xu Z, Zhou S, Ye L, Yan Q,
Zhang Y, Fang Y, Liu Y, Tu C, et al: MiR-532-3p suppresses
colorectal cancer progression by disrupting the ETS1/TGM2
axis-mediated Wnt/β-catenin signaling. Cell Death Dis. 10:7392019.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Yared MA, Khoury JD, Medeiros LJ,
Rassidakis GZ and Lai R: Activation status of the JAK/STAT3 pathway
in mantle cell lymphoma. Arch Pathol Lab Med. 129:990–996. 2005.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Kim BH, Min YS, Choi JS, Baeg GH, Kim YS,
Shin JW, Kim TY and Ye SK: Benzoxathiol derivative BOT-4-one
suppresses L540 lymphoma cell survival and proliferation via
inhibition of JAK3/STAT3 signaling. Exp Mol Med. 43:313–321. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Li XD, Li XM, Gu JW and Sun XC: MiR-155
regulates lymphoma cell proliferation and apoptosis through
targeting SOCS3/JAK-STAT3 signaling pathway. Eur Rev Med Pharmacol
Sci. 24:75772020.PubMed/NCBI
|
36
|
Quesada AE, Zhang Y, Ptashkin R, Ho C,
Horwitz S, Benayed R, Dogan A and Arcila ME: Next generation
sequencing of breast implant-associated anaplastic large cell
lymphomas reveals a novel STAT3-JAK2 fusion among other activating
genetic alterations within the JAK-STAT pathway. Breast J.
27:314–321. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Liu J, Liang L, Li D, Nong L, Zheng Y,
Huang S, Zhang B and Li T: JAK3/STAT3 oncogenic pathway and PRDM1
expression stratify clinicopathologic features of extranodal
NK/T-cell lymphoma, nasal type. Oncol Rep. 41:3219–3232.
2019.PubMed/NCBI
|
38
|
Crescenzo R, Abate F, Lasorsa E, Tabbo' F,
Gaudiano M, Chiesa N, Di Giacomo F, Spaccarotella E, Barbarossa L,
Ercole E, et al: Convergent mutations and kinase fusions lead to
oncogenic STAT3 activation in anaplastic large cell lymphoma.
Cancer Cell. 27:516–532. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Jia C, Wang G, Wang T, Fu B, Zhang Y,
Huang L, Deng Y, Chen G, Wu X, Chen J, et al: Cancer-associated
Fibroblasts induce epithelial-mesenchymal transition via the
Transglutaminase 2-dependent IL-6/IL6R/STAT3 axis in hepatocellular
carcinoma. Int J Biol Sci. 16:2542–2558. 2020. View Article : Google Scholar : PubMed/NCBI
|