1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Travis WD, Brambilla E, Burke AP, Marx A
and Nicholson AG: Introduction to the 2015 World Health
Organization Classification of tumors of the lung, pleura, thymus,
and heart. J Thorac Oncol. 10:1240–1242. 2015. View Article : Google Scholar : PubMed/NCBI
|
3
|
Huang Z, Su W, Lu T, Wang Y, Dong Y, Qin
Y, Liu D, Sun L and Jiao W: First-line immune-checkpoint inhibitors
in non-small cell lung cancer: Current landscape and future
progress. Front Pharmacol. 11:5780912020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mittal V: Epithelial mesenchymal
transition in tumor metastasis. Annu Rev Pathol. 13:395–412. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Huang W, Yan Y, Liu Y, Lin M, Ma J, Zhang
W, Dai J, Li J, Guo Q, Chen H, et al: Exosomes with low miR-34c-3p
expression promote invasion and migration of non-small cell lung
cancer by upregulating integrin α2β1. Signal Transduct Target Ther.
5:392020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jørgensen CLT, Forsare C, Bendahl PO,
Falck AK, Fernö M, Lövgren K, Aaltonen K and Rydén L: Expression of
epithelial-mesenchymal transition-related markers and phenotypes
during breast cancer progression. Breast Cancer Res Treat.
181:369–381. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sauve AA, Wolberger C, Schramm VL and
Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem.
75:435–465. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhao B, Li X, Zhou L, Wang Y and Shang P:
SIRT1: A potential tumour biomarker and therapeutic target. J Drug
Target. 27:1046–1052. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Choupani J, Mansoori DS, Bayat S, Alivand
MR and Shekari KM: Narrower insight to SIRT1 role in cancer: A
potential therapeutic target to control epithelial-mesenchymal
transition in cancer cells. J Cell Physol. 233:4443–457. 2018.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Nehama D, Di Ianni N, Musio S, Du H,
Patane M, Pollo B, Finocchiaro G, Park JJ, Dunn DE, Edwards DS, et
al: B7-H3-redirected chimeric antigen receptor T cells target
glioblastoma and neurospheres. EBioMedicine. 47:33–43. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhang Z, Jiang C, Liu Z, Yang M, Tang X,
Wang Y, Zheng M, Huang J, Zhong K, Zhao S, et al: B7-H3-targeted
CAR-T cells exhibit potent antitumor effects on hematologic and
solid tumors. Mol Ther Oncolytics. 17:180–189. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Seaman S, Zhu Z, Saha S, Zhang XM, Yang
MY, Hilton MB, Morris K, Szot C, Morris H, Swing DA, et al:
Eradication of tumors through simultaneous ablation of
CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer
Cell. 31:501–515. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Altan M, Pelekanou V, Schalper KA, Toki M,
Gaule P, Syrigos K, Herbst RS and Rimm DL: B7-H3 expression in
NSCLC and its association with B7-H4, PD-L1 and tumor-infiltrating
lymphocytes. Clin Cancer Res. 23:5202–5209. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yonesaka K, Haratani K, Takamura S, Sakai
H, Kato R, Takegawa N, Takahama T, Tanaka K, Hayashi H, Takeda M,
et al: B7-H3 negatively modulates CTL-mediated cancer immunity.
Clin Cancer Res. 24:2653–2664. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cai D, Li J, Liu D, Hong S, Qiao Q, Sun Q,
Li P, Lyu N, Sun T, Xie S, et al: Tumor-expressed B7-H3 mediates
the inhibition of antitumor T-cell functions in ovarian cancer
insensitive to PD-1 blockade therapy. Cell Mol Immunol. 17:227–236.
2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yu TT, Zhang T, Lu X and Wang RZ: B7-H3
promotes metastasis, proliferation, and epithelial-mesenchymal
transition in lung adenocarcinoma. Onco Targets Ther. 11:4693–4700.
2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lin L, Cao L, Liu Y, Wang K, Zhang X, Qin
X, Zhao D, Hao J, Chang Y, Huang X, et al: B7-H3 promotes multiple
myeloma cell survival and proliferation by ROS-dependent activation
of Src/STAT3 and c-Cbl-mediated degradation of SOCS3. Leukemia.
33:1475–1486. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhong C, Tao B, Chen Y, Guo Z, Yang X,
Peng L, Xia X and Chen L: B7-H3 Regulates Glioma growth and cell
invasion through a JAK2/STAT3/Slug-dependent signaling pathway.
Onco Targets Ther. 13:2215–2224. 2020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kang FB, Wang L, Jia HC, Li D, Li HJ,
Zhang YG and Sun DX: B7-H3 promotes aggression and invasion of
hepatocellular carcinoma by targeting epithelial-to-mesenchymal
transition via JAK2/STAT3/Slug signaling pathway. Cancer Cell Int.
15:452015. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhou L and Zhao Y: B7-H3 induces ovarian
cancer drugs resistance through an PI3K/AKT/BCL-2 signaling
pathway. Cancer Manag Res. 11:10205–10214. 2019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li Z, Liu J, Que L and Tang X: The
immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral
squamous carcinoma via PI3K/Akt/mTOR pathway. J Cancer.
10:5770–5784. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Flem-Karlsen K, Fodstad Ø and Nunes-Xavier
CE: B7-H3 immune checkpoint protein in human cancer. Curr Med Chem.
27:4062–4086. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ding M, Liao H, Zhou N, Yang Y, Guan S and
Chen L: B7-H3-induced signaling in lung adenocarcinoma cell lines
with divergent epidermal growth factor receptor mutation patterns.
Biomed Res Int. 2020:88248052020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Howlader N, Noone AM, Krapcho M, Miller D,
Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, et al:
SEER Cancer Statistics Review, 1975-2016. National Cancer
Institute; https://seer.cancer.gov/csr/1975_2016/Bethesda, MD:
2019
|
26
|
Li Y, Zhang J, Han S, Qian Q, Chen Q, Liu
L and Zhang Y: B7-H3 promotes the proliferation, migration and
invasiveness of cervical cancer cells and is an indicator of poor
prognosis. Oncol Rep. 38:1043–1050. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xu ZL, Zhang Y, Wang L, Li F, Man HW, Li
PF and Shan BE: B7-H3 promotes malignant progression of
muscle-invasive bladder cancer. Oncol Rep. 40:2722–2733.
2018.PubMed/NCBI
|
28
|
Dai W, Shen G, Qiu J, Zhao X and Gao Q:
Aberrant expression of B7-H3 in gastric adenocarcinoma promotes
cancer cell metastasis. Oncol Rep. 32:2086–2092. 2014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang X, Feng KX, Li H, Wang L and Xia H:
MicroRNA-199a inhibits cell proliferation, migration, and invasion
and activates AKT/mTOR signaling pathway by targeting B7-H3 in
cervical cancer. Technol Cancer Res Treat. Aug 28–2020.(Epub ahead
of print). doi: 10.1177/1533033820942245. View Article : Google Scholar
|
30
|
Fan TF, Deng WW, Bu LL, Wu TF, Zhang WF
and Sun ZJ: B7-H3 regulates migration and invasion in salivary
gland adenoid cystic carcinoma via the JAK2/STAT3 signaling
pathway. Am J Transl Res. 9:1369–1380. 2017.PubMed/NCBI
|
31
|
Luo M, Wang F, Zhang H, To KKW, Wu S, Chen
Z, Liang S and Fu L: Mitomycin C enhanced the efficacy of PD-L1
blockade in non-small cell lung cancer. Signal Transduct Target
Ther. 5:1412020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kontos F, Michelakos T, Kurokawa T,
Sadagopan A, Schwab JH, Ferrone CR and Ferrone S: B7-H3: An
attractive target for antibody-based immunotherapy. Clin Cancer
Res. 27:1227–1235. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Bretschi M, Merz M, Komljenovic D, Berger
MR, Semmler W and Bäuerle T: Cilengitide inhibits metastatic bone
colonization in a nude rat model. Oncol Rep. 26:843–851.
2011.PubMed/NCBI
|
34
|
Ye Z, Fang B, Pan J, Zhang N, Huang J, Xie
C, Lou T and Cao Z: miR-138 suppresses the proliferation,
metastasis and autophagy of non-small cell lung cancer by targeting
Sirt1. Oncol Rep. 37:3244–3252. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang HL, Wang HR, Liang Y, Hu AN, Enguita
FJ, Zhou XG and Dong J: Hsa_circ_0006571 promotes spinal metastasis
through sponging microRNA-138 to regulate sirtuin 1 expression in
lung adenocarcinoma. Transl Lung Cancer Res. 9:2411–2427. 2020.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Li X, Jiang Z, Li X and Zhang X: SIRT1
overexpression protects non-small cell lung cancer cells against
osteopontin-induced epithelial-mesenchymal transition by
suppressing NF-κB signaling. Onco Targets Ther. 11:1157–1171. 2018.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Meng F, Yang M, Chen Y, Chen W and Wang W:
miR-34a induces immunosuppression in colorectal carcinoma through
modulating a SIRT1/NF-κB/B7-H3/TNF-α axis. Cancer Immunol
Immunother. 70:2247–2259. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yu X, Li Y, Jiang G, Fang J, You Z, Shao
G, Zhang Z, Jiao A and Peng X: FGF21 promotes non-small cell lung
cancer progression by SIRT1/PI3K/AKT signaling. Life Sci.
269:1188752021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Guo G, Song J, Cai Z, Yang J, Chen
Z, Wang Y, Huang Y and Gao Q: B7-H3 promotes the migration and
invasion of human bladder cancer cells via the PI3K/Akt/STAT3
signaling pathway. J Cancer. 8:816–824. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang P, Chen Z, Ning K, Jin J and Han X:
Inhibition of B7-H3 reverses oxaliplatin resistance in human
colorectal cancer cells. Biochem Biophys Res Commun. 490:1132–1138.
2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wang R, Ma Y, Zhan S, Zhang G, Cao L,
Zhang X, Shi T and Chen W: B7-H3 promotes colorectal cancer
angiogenesis through activating the NF-κB pathway to induce VEGFA
expression. Cell Death Dis. 11:552020. View Article : Google Scholar : PubMed/NCBI
|