1
|
Kumari S, Chaurasia SN, Nayak MK, Mallick
RL and Dash D: Sirtuin inhibition induces apoptosis-like changes in
platelets and thrombocytopenia. J Biol Chem. 290:12290–12299. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Boutant M and Canto C: SIRT1 metabolic
actions: Integrating recent advances from mouse models. Mol Metab.
3:5–18. 2013. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tsai KL, Cheng YY, Leu HB, Lee YY, Chen
TJ, Liu DH and Kao CL: Investigating the role of Sirt1-modulated
oxidative stress in relation to benign paroxysmal positional
vertigo and Parkinson's disease. Neurobiol Aging. 36:2607–2616.
2015. View Article : Google Scholar : PubMed/NCBI
|
4
|
Poulose N and Raju R: Sirtuin regulation
in aging and injury. Biochim Biophys Acta. 1852:2442–2455. 2015.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Tanno M, Sakamoto J, Miura T, Shimamoto K
and Horio Y: Nucleocytoplasmic shuttling of the NAD+-dependent
histone deacetylase SIRT1. J Biol Chem. 282:6823–6832. 2007.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Moynihan KA, Grimm AA, Plueger MM,
Bernal-Mizrachi E, Ford E, Cras-Méneur C, Permutt MA and Imai SI:
Increased dosage of mammalian Sir2 in pancreatic beta cells
enhances glucose-stimulated insulin secretion in mice. Cell Metab.
2:105–117. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
D'Onofrio N, Servillo L and Balestrieri
ML: SIRT1 and SIRT6 signaling pathways in cardiovascular disease
protection. Antioxid Redox Signal. 28:711–732. 2018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Meng X, Tan J, Li M, Song S, Miao Y and
Zhang Q: Sirt1: Role under the condition of ischemia/hypoxia. Cell
Mol Neurobiol. 37:17–28. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF
and Zheng X: Resveratrol, an activator of SIRT1, upregulates AMPK
and improves cardiac function in heart failure. Genet Mol Res.
13:323–335. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cattelan A, Ceolotto G, Bova S, Albiero M,
Kuppusamy M, De Martin S, Semplicini A, Fadini GP, de Kreutzenberg
SV and Avogaro A: NAD(+)-dependent SIRT1 deactivation has a key
role on ischemia-reperfusion-induced apoptosis. Vascul Pharmacol.
70:35–44. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shalwala M, Zhu SG, Das A, Salloum FN, Xi
L and Kukreja RC: Sirtuin 1 (SIRT1) activation mediates sildenafil
induced delayed cardioprotection against ischemia-reperfusion
injury in mice. PLoS One. 9:e869772014. View Article : Google Scholar : PubMed/NCBI
|
12
|
Alcendor RR, Gao S, Zhai P, Zablocki D,
Holle E, Yu X, Tian B, Wagner T, Vatner SF and Sadoshima J: Sirt1
regulates aging and resistance to oxidative stress in the heart.
Circ Res. 100:1512–1521. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hsu CP, Zhai P, Yamamoto T, Maejima Y,
Matsushima S, Hariharan N, Shao D, Takagi H, Oka S and Sadoshima J:
Silent information regulator 1 protects the heart from
ischemia/reperfusion. Circulation. 122:2170–2182. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu CZ, Li X, Hong L, Han ZN, Liu Y, Wei CX
and Cui X: NOX4/Src regulates ANP secretion through activating
ERK1/2 and Akt/GATA4 signaling in beating rat hypoxic atria. Korean
J Physiol Pharmacol. 25:159–166. 2021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kim HY, Cho KW, Xu DY, Kang DG and Lee HS:
Endogenous ACh tonically stimulates ANP secretion in rat atria. Am
J Physiol Heart Circ Physiol. 305:H1050–H1056. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals, . Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press; Washington, DC: 2011
|
17
|
Li X, Han ZN, Liu Y, Hong L, Cui BR and
Cui X: Endogenous ET-1 promotes ANP secretion through activation of
COX2-L-PGDS-PPARγ signaling in hypoxic beating rat atria. Peptides.
122:1701502019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen QM and Maltagliati AJ: Nrf2 at the
heart of oxidative stress and cardiac protection. Physiol Genomics.
50:77–97. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN,
Chen P, Ma KT and Zhou CY: beta-Catenin/TCF/LEF1 can directly
regulate phenylephrine-induced cell hypertrophy and Anf
transcription in cardiomyocytes. Biochem Biophys Res Commun.
390:258–262. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Y, Zhou A, Zhao S, Huber WE and Li Q:
Quadruple atrioventricular nodal pathways: involved in orthodromic
atrioventricular reentrant tachycardia. Tex Heart Inst J.
37:706–709. 2010.PubMed/NCBI
|
21
|
Huang L, He H, Liu Z, Liu D, Yin D and He
M: Protective effects of isorhamnetin on cardiomyocytes against
anoxia/reoxygenation-induced injury is mediated by SIRT1. J
Cardiovasc Pharmacol. 67:526–537. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Yu L, Li S, Tang X, Li Z, Zhang J, Xue X,
Han J, Liu Y, Zhang Y, Zhang Y, et al: Diallyl trisulfide
ameliorates myocardial ischemia-reperfusion injury by reducing
oxidative stress and endoplasmic reticulum stress-mediated
apoptosis in type 1 diabetic rats: Role of SIRT1 activation.
Apoptosis. 22:942–954. 2017. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li
M, Huang C, Zhang X and Chen L: Adipose-derived mesenchymal stem
cells promote the survival of fat grafts via crosstalk between the
Nrf2 and TLR4 pathways. Cell Death Dis. 7:e23692016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Deng S, Essandoh K, Wang X, Li Y, Huang W,
Chen J, Peng J, Jiang DS, Mu X, Wang C, et al: Tsg101 positively
regulates P62-Keap1-Nrf2 pathway to protect hearts against
oxidative damage. Redox Biol. 32:1014532020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhou H, Li N, Yuan Y, Jin YG, Guo H, Deng
W and Tang QZ: Activating transcription factor 3 in cardiovascular
diseases: A potential therapeutic target. Basic Res Cardiol.
113:372018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ameri K and Harris AL: Activating
transcription factor 4. Int J Biochem Cell Biol. 40:14–21. 2008.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Grumolato L, Liu G, Haremaki T, Mungamuri
SK, Mong P, Akiri G, Lopez-Bergami P, Arita A, Anouar Y, Mlodzik M,
et al: β-Catenin-independent activation of TCF1/LEF1 in human
hematopoietic tumor cells through interaction with ATF2
transcription factors. PLoS Genet. 9:e10036032013. View Article : Google Scholar : PubMed/NCBI
|