1
|
Alberti C, Brun-Buisson C, Burchardi H,
Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, Moreno R,
Boulmé R, et al: Epidemiology of sepsis and infection in ICU
patients from an international multicentre cohort study. Intensive
Care Med. 28:108–121. 2002. View Article : Google Scholar : PubMed/NCBI
|
2
|
Hotchkiss RS and Karl IE: The
pathophysiology and treatment of sepsis. N Engl J Med. 348:138–50.
2003. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bagshaw SM, George C and Bellomo R; ANZICS
Database Management Committee, : Early acute kidney injury and
sepsis: A multicentre evaluation. Crit Care. 12:R472008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mehta RL, Bouchard J, Soroko SB, Ikizler
TA, Paganini EP, Chertow GM and Himmelfarb J; Program to Improve
Care in Acute Renal Disease (PICARD) Study Group, : Sepsis as a
cause and consequence of acute kidney injury: Program to improve
care in Acute Renal Disease. Intensive Care Med. 37:241–248. 2011.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Gomez H, Ince C, De Backer D, Pickkers P,
Payen D, Hotchkiss J and Kellum JA: A unified theory of
sepsis-induced acute kidney injury: Inflammation, microcirculatory
dysfunction, bioenergetics, and the tubular cell adaptation to
injury. Shock. 41:3–11. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Peerapornratana S, Manrique-Caballero CL,
Gómez H and Kellum JA: Acute kidney injury from sepsis: Current
concepts, epidemiology, pathophysiology, prevention and treatment.
Kidney Int. 96:1083–1099. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Szabo C: Hydrogen sulphide and its
therapeutic potential. Nat Rev Drug Discov. 6:917–935. 2007.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ahangarpour A, Abdollahzade Fard A,
Gharibnaseri MK, Jalali T and Rashidi I: Hydrogen sulfide
ameliorates the kidney dysfunction and damage in cisplatin-induced
nephrotoxicity in rat. Vet Res Forum. 5:121–127. 2014.PubMed/NCBI
|
9
|
Bos EM, Leuvenink HG, Snijder PM,
Kloosterhuis NJ, Hillebrands JL, Leemans JC, Florquin S and van
Goor H: Hydrogen sulfide-induced hypometabolism prevents renal
ischemia/reperfusion injury. J Am Soc Nephrol. 20:1901–1905. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Han SJ, Kim JI, Park JW and Park KM:
Hydrogen sulfide accelerates the recovery of kidney tubules after
renal ischemia/reperfusion injury. Nephrol Dial Transplant.
30:1497–1506. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhu JX, Kalbfleisch M, Yang YX, Bihari R,
Lobb I, Davison M, Mok A, Cepinskas G, Lawendy AR and Sener A:
Detrimental effects of prolonged warm renal ischaemia-reperfusion
injury are abrogated by supplemental hydrogen sulphide: An analysis
using real-time intravital microscopy and polymerase chain
reaction. BJU Int. 110:E1218–E1227. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhou X, Feng Y, Zhan Z and Chen J:
Hydrogen sulfide alleviates diabetic nephropathy in a
streptozotocin-induced diabetic rat model. J Biol Chem.
289:28827–28834. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee HJ, Mariappan MM, Feliers D,
Cavaglieri RC, Sataranatarajan K, Abboud HE, Choudhury GG and
Kasinath BS: Hydrogen sulfide inhibits high glucose-induced matrix
protein synthesis by activating AMP-activated protein kinase in
renal epithelial cells. J Biol Chem. 287:4451–4461. 2012.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Safar MM and Abdelsalam RM: H2S donors
attenuate diabetic nephropathy in rats: Modulation of oxidant
status and polyol pathway. Pharmacol Rep. 67:17–23. 2015.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Jiang D, Zhang Y, Yang M, Wang S, Jiang Z
and Li Z: Exogenous hydrogen sulfide prevents kidney damage
following unilateral ureteral obstruction. Neurourol Urodyn.
33:538–543. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Song K, Wang F, Li Q, Shi YB, Zheng HF,
Peng H, Shen HY, Liu CF and Hu LF: Hydrogen sulfide inhibits the
renal fibrosis of obstructive nephropathy. Kidney Int.
85:1318–1329. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dursun M, Otunctemur A, Ozbek E, Sahin S,
Besiroglu H, Ozsoy OD, Cekmen M, Somay A and Ozbay N: Protective
effect of hydrogen sulfide on renal injury in the experimental
unilateral ureteral obstruction. Int Braz J Urol. 41:1185–1193.
2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu
X, Tian D and Wu Y: Hydrogen sulfide attenuates LPS-Induced acute
kidney injury by inhibiting inflammation and oxidative stress. Oxid
Med Cell Longev. 2018:67172122018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Levine B and Klionsky DJ: Development by
self-digestion: Molecular mechanisms and biological functions of
autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mizushima N, Yoshimori T and Ohsumi Y: The
role of Atg proteins in autophagosome formation. Annu Rev Cell Dev
Biol. 27:107–132. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hsiao HW, Tsai KL, Wang LF, Chen YH,
Chiang PC, Chuang SM and Hsu C: The decline of autophagy
contributes to proximal tubular dysfunction during sepsis. Shock.
37:289–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Leventhal JS, Ni J, Osmond M, Lee K,
Gusella GL, Salem F and Ross MJ: Autophagy limits endotoxemic acute
kidney injury and alters renal tubular epithelial cell cytokine
expression. PLoS One. 11:e1500012016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Jiang M, Wei Q, Dong G, Komatsu M, Su Y
and Dong Z: Autophagy in proximal tubules protects against acute
kidney injury. Kidney Int. 82:1271–1283. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu S, Hartleben B, Kretz O, Wiech T,
Igarashi P, Mizushima N, Walz G and Huber TB: Autophagy plays a
critical role in kidney tubule maintenance, aging and
ischemia-reperfusion injury. Autophagy. 8:826–837. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li T, Liu Y, Zhao J, Miao S, Xu Y, Liu K,
Liu M, Wang G and Xiao X: Aggravation of acute kidney injury by
mPGES-2 down regulation is associated with autophagy inhibition and
enhanced apoptosis. Sci Rep. 7:102472017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Yang F, Zhang L, Gao Z, Sun X, Yu M, Dong
S, Wu J, Zhao Y, Xu C, Zhang W and Lu F: Exogenous H2S protects
against diabetic cardiomyopathy by activating autophagy via the
AMPK/mTOR Pathway. Cell Physiol Biochem. 43:1168–1187. 2017.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu Y, Liao R, Qiang Z, Yang W, Cao J and
Zeng H: Exogenous H2S protects colon cells in ulcerative
colitis by inhibiting NLRP3 and activating autophagy. DNA Cell
Biol. 40:748–756. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang S, Yang G, Guan W, Li B, Feng X and
Fan H: Autophagy plays a protective role in sodium
hydrosulfide-induced acute lung injury by attenuating oxidative
stress and inflammation in rats. Chem Res Toxicol. 34:857–864.
2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhao Y, Feng X, Li B, Sha J, Wang C, Yang
T, Cui H and Fan H: Dexmedetomidine protects against
lipopolysaccharide-induced acute kidney injury by enhancing
autophagy through inhibition of the PI3K/AKT/mTOR pathway. Front
Pharmacol. 11:1282020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hu L, Guo J, Zhou L, Zhu S, Wang C, Liu J,
Hu S, Yang M and Lin C: Hydrogen sulfide protects retinal pigment
epithelial cells from oxidative stress-induced apoptosis and
affects autophagy. Oxid Med Cell Longev. 2020:88685642020.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Lerolle N, Nochy D, Guérot E, Bruneval P,
Fagon JY, Diehl JL and Hill G: Histopathology of septic shock
induced acute kidney injury: Apoptosis and leukocytic infiltration.
Intensive Care Med. 36:471–478. 2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhang B, Ramesh G, Uematsu S, Akira S and
Reeves WB: TLR4 signaling mediates inflammation and tissue injury
in nephrotoxicity. J Am Soc Nephrol. 19:923–932. 2008. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ho AW, Wong CK and Lam CW: Tumor necrosis
factor-alpha up-regulates the expression of CCL2 and adhesion
molecules of human proximal tubular epithelial cells through MAPK
signaling pathways. Immunobiology. 213:533–544. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Allam R, Scherbaum CR, Darisipudi MN,
Mulay SR, Hägele H, Lichtnekert J, Hagemann JH, Rupanagudi KV, Ryu
M, Schwarzenberger C, et al: Histones from dying renal cells
aggravate kidney injury via TLR2 and TLR4. J Am Soc Nephrol.
23:1375–1388. 2012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hosoki R, Matsuki N and Kimura H: The
possible role of hydrogen sulfide as an endogenous smooth muscle
relaxant in synergy with nitric oxide. Biochem Biophys Res Commun.
237:527–531. 1997. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin F, Liao C, Sun Y, Zhang J, Lu W, Bai
Y, Liao Y, Li M, Ni X, Hou Y, et al: Hydrogen sulfide inhibits
cigarette smoke-induced endoplasmic reticulum stress and apoptosis
in bronchial epithelial cells. Front Pharmacol. 8:6752017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Feng X, Zhang H, Shi M, Chen Y, Yang T and
Fan H: Toxic effects of hydrogen sulfide donor NaHS induced liver
apoptosis is regulated by complex IV subunits and reactive oxygen
species generation in rats. Environ Toxicol. 35:322–332. 2020.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ahmad A, Druzhyna N and Szabo C: Delayed
treatment with sodium hydrosulfide improves regional blood flow and
alleviates cecal ligation and puncture (CLP)-Induced septic shock.
Shock. 46:183–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chen YH, Teng X, Hu ZJ, Tain DY, Jin S and
Wu YM: Hydrogen sulfide attenuated sepsis-induced myocardial
dysfunction through TLR4 pathway and endoplasmic reticulum stress.
Front Physiol. 12:6536012021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sun L, Zhang S, Yu C, Pan Z, Liu Y, Zhao
J, Wang X, Yun F, Zhao H, Yan S, et al: Hydrogen sulfide reduces
serum triglyceride by activating liver autophagy via the AMPK-mTOR
pathway. Am J Physiol Endocrinol Metab. 309:E925–E935. 2015.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang C, Kaushal V, Shah SV and Kaushal GP:
Autophagy is associated with apoptosis in cisplatin injury to renal
tubular epithelial cells. Am J Physiol Renal Physiol.
294:F777–F787. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Periyasamy-Thandavan S, Jiang M, Wei Q,
Smith R, Yin XM and Dong Z: Autophagy is cytoprotective during
cisplatin injury of renal proximal tubular cells. Kidney Int.
74:631–640. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Kaushal GP, Kaushal V, Herzog C and Yang
C: Autophagy delays apoptosis in renal tubular epithelial cells in
cisplatin cytotoxicity. Autophagy. 4:710–712. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Herzog C, Yang C, Holmes A and Kaushal GP:
zVAD-fmk prevents cisplatin-induced cleavage of autophagy proteins
but impairs autophagic flux and worsens renal function. Am J
Physiol Renal Physiol. 303:F1239–F1250. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Han J, Bae J, Choi CY, Choi SP, Kang HS,
Jo EK, Park J, Lee YS, Moon HS, Park CG, et al: Autophagy induced
by AXL receptor tyrosine kinase alleviates acute liver injury via
inhibition of NLRP3 inflammasome activation in mice. Autophagy.
12:2326–2343. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tong Z, Jiang B, Zhang L, Liu Y, Gao M,
Jiang Y, Li Y, Lu Q, Yao Y and Xiao X: HSF-1 is involved in
attenuating the release of inflammatory cytokines induced by LPS
through regulating autophagy. Shock. 41:449–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
48
|
Zhang GY, Lu D, Duan SF, Gao YR, Liu SY,
Hong Y, Dong PZ, Chen YG, Li T, Wang DY, et al: Hydrogen sulfide
alleviates lipopolysaccharide-induced diaphragm dysfunction in rats
by reducing apoptosis and inflammation through ROS/MAPK and
TLR4/NF-κB signaling pathways. Oxid Med Cell Longev.
2018:96478092018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Han X, Mao Z, Wang S, Xin Y, Li P,
Maharjan S and Zhang B: GYY4137 protects against MCAO via p38 MAPK
mediated anti-apoptotic signaling pathways in rats. Brain Res Bull.
158:59–65. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang H, Zhong P and Sun L: Exogenous
hydrogen sulfide mitigates NLRP3 inflammasome-mediated inflammation
through promoting autophagy via the AMPK-mTOR pathway. Biol Open.
8:bio0436532019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhao S, Song T, Gu Y, Zhang Y, Cao S, Miao
Q, Zhang X, Chen H, Gao Y, Zhang L, et al: Hydrogen sulfide
alleviates liver injury Through the S-Sulfhydrated-Kelch-Like
ECH-Associated Protein 1/Nuclear Erythroid 2-Related Factor
2/Low-Density Lipoprotein Receptor-Related Protein 1 pathway.
Hepatology. 73:282–302. 2021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wu J, Tian Z, Sun Y, Lu C, Liu N, Gao Z,
Zhang L, Dong S, Yang F, Zhong X, et al: Exogenous H2S
facilitating ubiquitin aggregates clearance via autophagy
attenuates type 2 diabetes-induced cardiomyopathy. Cell Death Dis.
8:e29922017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Zhao S, Yang L, Li L and Fan Z: NaHS
alleviated cell apoptosis and mitochondrial dysfunction in remote
lung tissue after renal ischemia and reperfusion via Nrf2
activation-mediated NLRP3 pathway inhibition. Biomed Res Int.
2021:55988692021. View Article : Google Scholar : PubMed/NCBI
|