1
|
Boulet LP, Reddel HK, Bateman E, Pedersen
S, FitzGerald JM and O'Byrne PM: The global initiative for asthma
(GINA): 25 years later. Eur Respir J. 54:19005982019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lin J, Wang W, Chen P, Zhou X, Wan H, Yin
K, Ma L, Wu C, Li J, Liu C, et al: Prevalence and risk factors of
asthma in mainland China: The CARE study. Respir Med. 137:48–54.
2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lambrecht BN, Hammad H and Fahy JV: The
cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Pavord ID, Beasley R, Agusti A, Anderson
GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy
JV, et al: After asthma: Redefining airways diseases. Lancet.
391:350–400. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heffler E, Madeira LNG, Ferrando M,
Puggioni F, Racca F, Malvezzi L, Passalacqua G and Canonica GW:
Inhaled corticosteroids safety and adverse effects in patients with
asthma. J Allergy Clin Immunol Pract. 6:776–781. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kato A and Schleimer RP: Beyond
inflammation: Airway epithelial cells are at the interface of
innate and adaptive immunity. Curr Opin Immunol. 19:711–720. 2007.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hiemstra PS, McCray PB Jr and Bals R: The
innate immune function of airway epithelial cells in inflammatory
lung disease. Eur Respir J. 45:1150–1162. 2015. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lopez-Guisa JM, Powers C, File D, Cochrane
E, Jimenez N and Debley JS: Airway epithelial cells from asthmatic
children differentially express proremodeling factors. J Allergy
Clin Immunol. 129:990–997.e6. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Haddad A, Gaudet M, Plesa M, Allakhverdi
Z, Mogas AK, Audusseau S, Baglole CJ, Eidelman DH, Olivenstein R,
Ludwig MS and Hamid Q: Neutrophils from severe asthmatic patients
induce epithelial to mesenchymal transition in healthy bronchial
epithelial cells. Respir Res. 20:2342019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wątroba M, Dudek I, Skoda M, Stangret A,
Rzodkiewicz P and Szukiewicz D: Sirtuins, epigenetics and
longevity. Ageing Res Rev. 40:11–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ma K, Lu N, Zou F and Meng FZ: Sirtuins as
novel targets in the pathogenesis of airway inflammation in
bronchial asthma. Eur J Pharmacol. 865:1726702019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Liu TF, Vachharajani V, Millet P,
Bharadwaj MS, Molina AJ and Mccall CE: Sequential actions of
SIRT1-RELB-SIRT3 coordinate nuclear-mitochondrial communication
during immunometabolic adaptation to acute inflammation and sepsis.
J Biol Chem. 290:396–408. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ren JH, Xiang C, Li Z, Tao NN, Zhou HZ,
Liu B, Li WY, Huang AL and Chen J: Protective role of sirtuin3
(SIRT3) in Oxidative stress mediated by hepatitis B virus X protein
expression. PLoS One. 11:e01509612016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Koyama T, Kume S, Koya D, Araki S, Isshiki
K, Chin-Kanasaki M, Sugimoto T, Haneda M, Sugaya T, Kashiwagi A, et
al: SIRT3 attenuates palmitate-induced ROS production and
inflammation in proximal tubular cells. Free Radic Biol Med.
51:1258–1267. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chun P: Role of sirtuins in chronic
obstructive pulmonary disease. Arch Pharm Res. 38:1–10. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Kurundkar D, Kurundkar AR, Bone NB, Becker
EJ Jr, Liu W, Chacko B, Darley-Usmar V, Zmijewski JW and Thannickal
VJ: SIRT3 diminishes inflammation and mitigates endotoxin-induced
acute lung injury. JCI Insight. 4:e1207222019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tian YG and Zhang J: Protective effect of
SIRT3 on acute lung injury by increasing manganese superoxide
dismutase-mediated antioxidation. Mol Med Rep. 17:5557–5565.
2018.PubMed/NCBI
|
18
|
Zhang M, Zhang Y, Roth M, Zhang L, Shi R,
Yang X, Li Y and Zhang J: Sirtuin 3 inhibits airway epithelial
mitochondrial oxidative stress in cigarette smoke-induced COPD.
Oxid Med Cell Longev. 2020:75829802020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen IC, Huang HH, Chen PF and Chiang HC:
Sirtuin 3 protects against urban particulate matter-induced
autophagy in human bronchial epithelial cells. Toxicol Sci.
152:113–127. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wang Y, Li D, Ma G, Li W, Wu J, Lai T,
Huang D, Zhao X, Lv Q, Chen M and Wu B: Increases in peripheral
SIRT 1: A new biological characteristic of asthma. Respirology.
20:1066–1072. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tsilogianni Z, Baker JR, Papaporfyriou A,
Papaioannou AI, Papathanasiou E, Koulouris NG, Daly L, Ito K,
Hillas G, Papiris S, et al: Sirtuin 1: Endocan and sestrin 2 in
different biological samples in patients with asthma. Does severity
make the difference? J Clin Med. 9:4732020.PubMed/NCBI
|
22
|
Colley T, Mercado N, Kunori Y, Brightling
C, Bhavsar PK, Barnes PJ and Ito K: Defective sirtuin-1 increases
IL-4 expression through acetylation of GATA-3 in patients with
severe asthma. J Allergy Clin Immunol. 137:1595–1597. –e7. 2016.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Giralt A and Villarroya F: SIRT3, a
pivotal actor in mitochondrial functions: Metabolism, cell death
and aging. Biochem J. 444:1–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Roscioli E, Hamon R, Ruffin RE, Lester S
and Zalewski P: Cellular inhibitor of apoptosis-2 is a critical
regulator of apoptosis in airway epithelial cells treated with
asthma-related inflammatory cytokines. Physiol Rep. 1:e001232013.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Trautmann A, Schmid-Grendelmeier P, Krüger
K, Crameri R, Akdis M, Akkaya A, Bröcker EB, Blaser K and Akdis CA:
T cells and eosinophils cooperate in the induction of bronchial
epithelial cell apoptosis in asthma. J Allergy Clin Immunol.
109:329–337. 2002. View Article : Google Scholar : PubMed/NCBI
|
26
|
Jablonski RP, Kim SJ, Cheresh P, Williams
DB, Morales-Nebreda L, Cheng Y, Yeldandi A, Bhorade S, Pardo A,
Selman M, et al: SIRT3 deficiency promotes lung fibrosis by
augmenting alveolar epithelial cell mitochondrial DNA damage and
apoptosis. FASEB J. 31:2520–2532. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang M, Yang C and Pei Y: Effects of
downregulation of SIRT3 expression on proliferation and apoptosis
in esophageal squamous cell carcinoma EC9706 cells and its
molecular mechanisms. Biomed Mater Eng. 24:3883–3890.
2014.PubMed/NCBI
|
28
|
Qiao A, Wang K, Yuan Y, Guan Y, Ren X, Li
L, Chen X, Li F, Chen AF, Zhou J, et al: Sirt3-mediated mitophagy
protects tumor cells against apoptosis under hypoxia. Oncotarget.
7:43390–43400. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Luo X, Yang Z, Zheng S, Cao Y and Wu Y:
Retracted: Sirt3 activation attenuated oxidized low-density
lipoprotein-induced human umbilical vein endothelial cells'
apoptosis by sustaining autophagy. Cell Biol Int. 41:9322017.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiao X, Li Y, Zhang T, Liu M and Chi Y:
Role of Sirtuin3 in high glucose-induced apoptosis in renal tubular
epithelial cells. Biochem Biophys Res Commun. 480:387–393. 2016.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Geng G, Du Y, Dai J, Tian D, Xia Y and Fu
Z: KIF3A knockdown sensitizes bronchial epithelia to apoptosis and
aggravates airway inflammation in asthma. Biomed Pharmacother.
97:1349–1355. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Yilmaz O, Karaman M, Bagriyanik HA,
Firinci F, Kiray M, Turkeli A, Karaman O and Yuksel H: Comparison
of TNF antagonism by etanercept and dexamethasone on airway
epithelium and remodeling in an experimental model of asthma. Int
Immunopharmacol. 17:768–773. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang C, Li J, Lin H, Zhao K and Zheng C:
Nasal mucosa derived-mesenchymal stem cells from mice reduce
inflammation via modulating immune responses. PLoS One.
10:e01188492015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Karra L, Haworth O, Priluck R, Levy BD and
Levi-Schaffer F: Lipoxin B4 promotes the resolution of
allergic inflammation in the upper and lower airways of mice.
Mucosal Immunol. 8:852–862. 2015. View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Hu J, Zhang G and Selzer ME: Activated
caspase detection in living tissue combined with subsequent
retrograde labeling, immunohistochemistry or in situ hybridization
in whole-mounted lamprey brains. J Neurosci Methods. 220:92–98.
2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Wang H, Liu Y, Shi J and Cheng Z: ORMDL3
knockdown in the lungs alleviates airway inflammation and airway
remodeling in asthmatic mice via JNK1/2-MMP-9 pathway. Biochem
Biophys Res Commun. 516:739–746. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Boniakowski AE, denDekker AD, Davis FM,
Joshi A, Kimball AS, Schaller M, Allen R, Bermick J, Nycz D,
Skinner ME, et al: SIRT3 regulates macrophage-mediated inflammation
in diabetic wound repair. J Invest Dermatol. 139:2528–2537.e2.
2019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zheng J, Shi L, Feng L, Xu W, Li T, Gao L,
Sun Z, Yu J and Zhang J: Sirt3 ameliorates oxidative stress and
mitochondrial dysfunction after intracerebral hemorrhage in
diabetic rats. Front Neurosci. 12:4142018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kao YY, Chou CH, Yeh LY, Chen YF, Chang
KW, Liu CJ, Fan Chiang CY and Lin SC: MicroRNA miR-31 targets SIRT3
to disrupt mitochondrial activity and increase oxidative stress in
oral carcinoma. Cancer Lett. 456:40–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chang G, Chen Y, Zhang H and Zhou W: Trans
sodium crocetinate alleviates ischemia/reperfusion-induced
myocardial oxidative stress and apoptosis via the SIRT3/FOXO3a/SOD2
signaling pathway. Int Immunopharmacol. 71:361–371. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Sahiner UM, Birben E, Erzurum S, Sackesen
C and Kalayci Ö: Oxidative stress in asthma: Part of the puzzle.
Pediatr Allergy Immunol. 29:789–800. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Mishra V, Banga J and Silveyra P:
Oxidative stress and cellular pathways of asthma and inflammation:
Therapeutic strategies and pharmacological targets. Pharmacol Ther.
181:169–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
44
|
Chandra J, Samali A and Orrenius S:
Triggering and modulation of apoptosis by oxidative stress. Free
Radic Biol Med. 29:323–333. 2000. View Article : Google Scholar : PubMed/NCBI
|
45
|
Pisoschi AM and Pop A: The role of
antioxidants in the chemistry of oxidative stress: A review. Eur J
Med Chem. 97:55–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yuk JE, Lee MY, Kwon OK, Cai XF, Jang HY,
Oh SR, Lee HK and Ahn KS: Effects of astilbic acid on airway
hyperresponsiveness and inflammation in a mouse model of allergic
asthma. Int Immunopharmacol. 11:266–273. 2011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Ji W, Chen X, Zhengrong C, Yumin H, Huang
L and Qiu Y: Therapeutic effects of anti-B7-1 antibody in an
ovalbumin-induced mouse asthma model. Int Immunopharmacol.
8:1190–1195. 2008. View Article : Google Scholar : PubMed/NCBI
|
48
|
Xie CH, Cao YM, Huang Y, Shi QW, Guo JH,
Fan ZW, Li JG, Chen BW and Wu BY: Long non-coding RNA TUG1
contributes to tumorigenesis of human osteosarcoma by sponging
miR-9-5p and regulating POU2F1 expression. Tumour Biol.
37:15031–15041. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Marszalek JR, Liu X, Roberts EA, Chui D,
Marth JD, Williams DS and Goldstein LS: Genetic evidence for
selective transport of opsin and arrestin by kinesin-II in
mammalian photoreceptors. Cell. 102:175–187. 2000. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fu Y, Kinter M, Hudson J, Humphries KM,
Lane RS, White JR, Hakim M, Pan Y, Verdin E and Griffin TM: Aging
promotes sirtuin 3-dependent cartilage superoxide dismutase 2
acetylation and osteoarthritis. Arthritis Rheumatol. 68:1887–1898.
2016. View Article : Google Scholar : PubMed/NCBI
|
51
|
Loh KP, Huang SH, De Silva R, Tan BK and
Zhu YZ: Oxidative stress: Apoptosis in neuronal injury. Curr
Alzheimer Res. 3:327–337. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lushchak VI: Free radicals, reactive
oxygen species, oxidative stress and its classification. Chem Biol
Interact. 224:164–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yijing GF and Tangxue-Ming SY: Activation
of Transcription Factor NF-kB and Accumulation of Reactive Oxygen
Species Are Involved in Arsenic Trioxide-induced Apoptosis of
Esophageal. Carcinoma Cells. 5:140. 2000.(In Chinese).
|
54
|
Ye J, Wang S, Leonard SS, Sun Y,
Butterworth L, Antonini J, Ding M, Rojanasakul Y, Vallyathan V,
Castranova V and Shi X: Role of reactive oxygen species and p53 in
chromium(VI)-induced apoptosis. J Biol Chem. 274:34974–34980. 1999.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Zhang J, Song X, Cao W, Lu J, Wang X, Wang
G, Wang Z and Chen X: Autophagy and mitochondrial dysfunction in
adjuvant-arthritis rats treatment with resveratrol. Sci Rep.
6:329282016. View Article : Google Scholar : PubMed/NCBI
|
56
|
Riiser A: The human microbiome, asthma and
allergy. Allergy Asthma Clin Immunol. 11:352015. View Article : Google Scholar : PubMed/NCBI
|
57
|
Fahy JV: Type 2 inflammation in
asthma-present in most, absent in many. Nat Rev Immunol. 15:57–65.
2015. View Article : Google Scholar : PubMed/NCBI
|
58
|
Almishri W, Santodomingo-Garzon T, Le T,
Stack D, Mody CH and Swain MG: TNFα augments cytokine-induced NK
cell IFNγ production through TNFR2. J Innate Immun. 8:617–629.
2016. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lampropoulou IT, Stangou Μ, Sarafidis P,
Gouliovaki A, Giamalis P, Tsouchnikas I, Didangelos T and
Papagianni Α: TNF-α pathway and T-cell immunity are activated early
during the development of diabetic nephropathy in type II diabetes
mellitus. Clin Immunol. 215:1084232020. View Article : Google Scholar : PubMed/NCBI
|
60
|
Brightling C, Berry M and Amrani Y:
Targeting TNF-alpha: A novel therapeutic approach for asthma. J
Allergy Clin Immunol. 121:5–10; quiz 11–2. 2008. View Article : Google Scholar : PubMed/NCBI
|
61
|
Berry M, Brightling C, Pavord I and
Wardlaw A: TNF-alpha in asthma. Curr Opin Pharmacol. 7:279–282.
2007. View Article : Google Scholar : PubMed/NCBI
|
62
|
Tabet F and Rye KA: High-density
lipoproteins, inflammation and oxidative stress. Clin Sci (Lond).
116:87–98. 2009. View Article : Google Scholar : PubMed/NCBI
|
63
|
Yoshikawa T: Inflammation and oxidative
stress. Nihon Naika Gakkai Zasshi. 95:1870–1875. 2006.(In
Japanese). View Article : Google Scholar : PubMed/NCBI
|
64
|
Chen Q, Zhou Y, Zhou L, Fu Z, Yang C, Zhao
L, Li S, Chen Y, Wu Y, Ling Z, et al: TRPC6-dependent
Ca2+ signaling mediates airway inflammation in response
to oxidative stress via ERK pathway. Cell Death Dis. 11:1702020.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Cao YJ, Zhang YM, Qi JP, Liu R, Zhang H
and He LC: Ferulic acid inhibits H2O2-induced oxidative stress and
inflammation in rat vascular smooth muscle cells via inhibition of
the NADPH oxidase and NF-κB pathway. Int Immunopharmacol.
28:1018–1025. 2015. View Article : Google Scholar : PubMed/NCBI
|
66
|
de Oliveira-Marques V, Cyrne L, Marinho HS
and Antunes F: A quantitative study of NF-kappaB activation by
H2O2: Relevance in inflammation and synergy with TNF-alpha. J
Immunol. 178:3893–3902. 2007. View Article : Google Scholar : PubMed/NCBI
|
67
|
Suwara MI, Borthwick LA, Mann J, Fisher AJ
and Mann DA: Inflammation: An important Regulator of the Fibrotic
Response: S120 IL-1 is a Key Epithelial Alarmin Which Oromotes
Fibroblast Activation. Newcastle University; Newcastle: 2010
|
68
|
Kim D, Park W, Lee S, Kim W, Park SK and
Kang KP: Absence of Sirt3 aggravates cisplatin nephrotoxicity via
enhanced renal tubular apoptosis and inflammation. Mol Med Rep.
18:3665–3672. 2018.PubMed/NCBI
|