1
|
Paul S and Candelario-Jalil E: Emerging
neuroprotective strategies for the treatment of ischemic stroke: An
overview of clinical and preclinical studies. Exp Neurol.
335:1135182021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Su XT, Wang L, Ma SM, Cao Y, Yang NN, Lin
LL, Fisher M, Yang JW and Liu CZ: Mechanisms of acupuncture in the
regulation of oxidative stress in treating ischemic stroke. Oxid
Med Cell Longev. Oct 24–2020.(Epub ahead of print). View Article : Google Scholar
|
3
|
Ranjbar Taklimie F, Gasterich N, Scheld M,
Weiskirchen R, Beyer C, Clarner T and Zendedel A: Hypoxia induces
astrocyte-derived Lipocalin-2 in ischemic stroke. Int J Mol Sci.
20:12712019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lv J, Guan W, You Q, Deng L, Zhu Y, Guo K,
Gao X, Kong J and Yang C: RIPC provides neuroprotection against
ischemic stroke by suppressing apoptosis via the mitochondrial
pathway. Sci Rep. 10:53612020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Gao CL, Hou GG, Liu J, Ru T, Xu YZ, Zhao
SY, Ye H, Zhang LY, Chen KX, Guo YW, et al: Synthesis and target
identification of benzoxepane derivatives as potential
anti-neuroinflammatory agents for ischemic stroke. Angew Chem Int
Ed Engl. 59:2429–2439. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Alim I, Caulfield JT, Chen Y, Swarup V,
Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie
EJ, et al: Selenium drives a transcriptional adaptive program to
block ferroptosis and treat stroke. Cell. 177:1262–1279.e1225.
2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Guadagno JV, Jones PS, Fryer TD, Barret O,
Aigbirhio FI, Carpenter TA, Price CJ, Gillard JH, Warburton EA and
Baron JC: Local relationships between restricted water diffusion
and oxygen consumption in the ischemic human brain. Stroke.
37:1741–1748. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li C, Sun H, Xu G, McCarter KD, Li J and
Mayhan WG: Mito-tempo prevents nicotine-induced exacerbation of
ischemic brain damage. J Appl Physiol (1985). 125:49–57. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Rose J, Brian C, Woods J, Pappa A,
Panayiotidis MI, Powers R and Franco R: Mitochondrial dysfunction
in glial cells: Implications for neuronal homeostasis and survival.
Toxicology. 391:109–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mondal NK, Behera J, Kelly KE, George AK,
Tyagi PK and Tyagi N: Tetrahydrocurcumin epigenetically mitigates
mitochondrial dysfunction in brain vasculature during ischemic
stroke. Neurochem Int. 122:120–138. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao D, Sun Y, Tan Y, Zhang Z, Hou Z, Gao
C, Feng P, Zhang X, Yi W and Gao F: Short-duration swimming
exercise after myocardial infarction attenuates cardiac dysfunction
and regulates mitochondrial quality control in aged mice. Oxid Med
Cell Longev. 2018:40790412018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Galvan DL, Green NH and Danesh FR: The
hallmarks of mitochondrial dysfunction in chronic kidney disease.
Kidney Int. 92:1051–1057. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Thoudam T, Ha CM, Leem J, Chanda D, Park
JS, Kim HJ, Jeon JH, Choi YK, Liangpunsakul S, Huh YH, et al: PDK4
augments ER-mitochondria contact to dampen skeletal muscle insulin
signaling during obesity. Diabetes. 68:571–586. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang J, Dai J and Cui H: Vitexin reverses
the autophagy dysfunction to attenuate MCAO-induced cerebral
ischemic stroke via mTOR/Ulk1 pathway. Biomed Pharmacother.
99:583–590. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Smith HK, Russell JM, Granger DN and
Gavins FN: Critical differences between two classical surgical
approaches for middle cerebral artery occlusion-induced stroke in
mice. J Neurosci Methods. 249:99–105. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang Y, Liu X, Bai J, Tian X, Zhao X, Liu
W, Duan X, Shang W, Fan HY and Tong C: Mitoguardin regulates
mitochondrial fusion through MitoPLD and is required for neuronal
homeostasis. Mol Cell. 61:111–124. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liang T, Hang W and Chen J, Wu Y, Wen B,
Xu K, Ding B and Chen J: ApoE4 (Δ272-299) induces
mitochondrial-associated membrane formation and mitochondrial
impairment by enhancing GRP75-modulated mitochondrial calcium
overload in neuron. Cell Biosci. 11:502021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Knauss S, Albrecht C, Dirnagl U, Mueller
S, Harms C, Hoffmann CJ, Koch SP, Endres M and Boehm-Sturm P: A
semiquantitative non-invasive measurement of PcomA patency in
C57BL/6 mice explains variance in ischemic brain damage in filament
MCAO. Front Neurosci. 14:5767412020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Seo SJ, Yoon SH and Do JT: Mitochondrial
dynamics in stem cells and differentiation. Int J Mol Sci.
19:38932018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Wu PK, Hong SK, Starenki D, Oshima K, Shao
H, Gestwicki JE, Tsai S and Park JI: Mortalin/HSPA9 targeting
selectively induces KRAS tumor cell death by perturbing
mitochondrial membrane permeability. Oncogene. 39:4257–4270. 2020.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Rousaki A, Miyata Y, Jinwal UK, Dickey CA,
Gestwicki JE and Zuiderweg ER: Allosteric drugs: The interaction of
antitumor compound MKT-077 with human Hsp70 chaperones. J Mol Biol.
411:614–632. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Escobar-Henriques M and Joaquim M:
Mitofusins: Disease gatekeepers and hubs in mitochondrial quality
control by E3 Ligases. Front Physiol. 10:5172019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Head E, Rofina J and Zicker S: Oxidative
stress, aging, and central nervous system disease in the canine
model of human brain aging. Vet Clin North Am Small Anim Pract.
38:167–178. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qadri R, Goyal V, Behari M, Subramanian A,
Datta SK and Mukhopadhyay AK: Alteration of mitochondrial function
in oxidative stress in parkinsonian neurodegeneration: A
cross-sectional study. Ann Indian Acad Neurol. 24:506–512.
2021.PubMed/NCBI
|
25
|
Zhao J, Dong L, Huo T, Cheng J, Li X,
Huangfu X, Sun S, Wang H and Li L: O-GlcNAc Transferase (OGT)
protects cerebral neurons from death during Ischemia/Reperfusion
(I/R) injury by modulating Drp1 in mice. Neuromolecular Med. Oct
27–2021.(Epub ahead of print). View Article : Google Scholar
|
26
|
Starenki D, Sosonkina N, Hong SK, Lloyd RV
and Park JI: Mortalin (GRP75/HSPA9) promotes survival and
proliferation of thyroid carcinoma cells. Int J Mol Sci.
20:20692019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhang G, Han M, Wang X and Xiao A: GRP75
involves in retinal ganglion cell apoptosis after rat optic nerve
crush. J Mol Neurosci. 56:422–430. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
D'Eletto M, Rossin F, Occhigrossi L,
Farrace MG, Faccenda D, Desai R, Marchi S, Refolo G, Falasca L,
Antonioli M, et al: Piacentini, transglutaminase type 2 regulates
ER-mitochondria contact sites by interacting with GRP75. Cell Rep.
25:3573–3581. e35742018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Brookes PS, Yoon Y, Robotham JL, Anders MW
and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate
triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Verma M, Wills Z and Chu CT: Excitatory
dendritic mitochondrial calcium toxicity: Implications for
Parkinson's and other neurodegenerative diseases. Front Neurosci.
12:5232018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shan Y and Cortopassi G: Mitochondrial
Hspa9/Mortalin regulates erythroid differentiation via iron-sulfur
cluster assembly. Mitochondrion. 26:94–103. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen TH, Kambal A, Krysiak K, Walshauser
MA, Raju G, Tibbitts JF and Walter MJ: Knockdown of Hspa9, a
del(5q31.2) gene, results in a decrease in hematopoietic
progenitors in mice. Blood. 117:1530–1539. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li X, Srinivasan SR, Connarn J, Ahmad A,
Young ZT, Kabza AM, Zuiderweg ER, Sun D and Gestwicki JE: Analogs
of the allosteric heat shock protein 70 (Hsp70) inhibitor, MKT-077,
as anti-cancer agents. ACS Med Chem Lett. 4:1042–1047. 2013.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Miyata Y, Li X, Lee HF, Jinwal UK,
Srinivasan SR, Seguin SP, Young ZT, Brodsky JL, Dickey CA, Sun D
and Gestwicki JE: Synthesis and initial evaluation of YM-08, a
blood-brain barrier permeable derivative of the heat shock protein
70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem
Neurosci. 4:930–939. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Mylonis I, Kourti M, Samiotaki M,
Panayotou G and Simos G: Mortalin-mediated and ERK-controlled
targeting of HIF-1α to mitochondria confers resistance to apoptosis
under hypoxia. J Cell Sci. 130:466–479. 2017.PubMed/NCBI
|