1
|
Barnett R: Acute myocardial infarction.
Lancet. 393:25802019. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ketchum ES, Dickstein K, Kjekshus J, Pitt
B, Wong MF, Linker DT and Levy WC: The seattle post myocardial
infarction model (SPIM): Prediction of mortality after acute
myocardial infarction with left ventricular dysfunction. Eur Heart
J Acute Cardiovasc Care. 3:46–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
De Villiers C and Riley PR: Mouse models
of myocardial infarction: Comparing permanent ligation and
ischaemia-reperfusion. Dis Model Mech. 13:dmm0465652020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Blankenberg S, Neumann JT and Westermann
D: Diagnosing myocardial infarction: A highly sensitive issue.
Lancet. 392:893–894. 2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Isaaz K and Gerbay A: Deferred stenting in
acute ST elevation myocardial infarction. Lancet. 388:13712016.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Hombach S and Kretz M: Non-coding RNAs:
Classification, biology and functioning. Adv Exp Med Biol.
937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu BY and Dong B: LncRNA H19 regulates
cardiomyocyte apoptosis and acute myocardial infarction by
targeting miR-29b. Int J Cardiol. 271:252018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yin Y, Lv L and Wang W: Expression of
miRNA-214 in the sera of elderly patients with acute myocardial
infarction and its effect on cardiomyocyte apoptosis. Exp Ther Med.
17:4657–4662. 2019.PubMed/NCBI
|
9
|
Xin B, Liu Y, Li G, Xu Y and Cui W: The
role of lncRNA SNHG16 in myocardial cell injury induced by acute
myocardial infarction and the underlying functional regulation
mechanism. Panminerva Med. 63:388–389. 2019.PubMed/NCBI
|
10
|
Zhang Y, Jiao L, Sun L, Li Y, Gao Y, Xu C,
Shao Y, Li M, Li C, Lu Y, et al: LncRNA ZFAS1 as a SERCA2a
inhibitor to cause intracellular Ca(2+) overload and contractile
dysfunction in a mouse model of myocardial infarction. Circ Res.
122:1354–1368. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Liao J, He Q, Li M, Chen Y, Liu Y and Wang
J: LncRNA MIAT: Myocardial infarction associated and more. Gene.
578:158–161. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hao K, Lei W, Wu H, Wu J, Yang Z, Yan S,
Lu XA, Li J, Xia X, Han X, et al: LncRNA-Safe contributes to
cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial
infarction. Theranostics. 9:7282–7297. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Viereck J, Bührke A, Foinquinos A,
Chatterjee S, Kleeberger JA, Xiao K, Janssen-Peters H, Batkai S,
Ramanujam D, Kraft T, et al: Targeting muscle-enriched long
non-coding RNA H19 reverses pathological cardiac hypertrophy. Eur
Heart J. 41:3462–3474. 2020.PubMed/NCBI
|
14
|
Yang J, Huang X, Hu F, Fu X, Jiang Z and
Chen K: LncRNA ANRIL knockdown relieves myocardial cell apoptosis
in acute myocardial infarction by regulating IL-33/ST2. Cell Cycle.
18:3393–3403. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yu SY, Dong B, Fang ZF, Hu XQ, Tang L and
Zhou SH: Knockdown of lncRNA AK139328 alleviates myocardial
ischaemia/reperfusion injury in diabetic mice via modulating
miR-204-3p and inhibiting autophagy. J Cell Mol Med. 22:4886–4898.
2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang SM, Liu GQ, Xian HB, Si JL, Qi SX and
Yu YP: LncRNA NEAT1 alleviates sepsis-induced myocardial injury by
regulating the TLR2/NF-κB signaling pathway. Eur Rev Med Pharmacol
Sci. 23:4898–4907. 2019.PubMed/NCBI
|
17
|
Wang Y and Zhang Y: LncRNA CAIF suppresses
LPS-induced inflammation and apoptosis of cardiomyocytes through
regulating miR-16 demethylation. Immun Inflamm Dis. 9:1468–1478.
2021. View
Article : Google Scholar : PubMed/NCBI
|
18
|
Liu CY, Zhang YH, Li RB, Zhou LY, An T,
Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, et al: LncRNA CAIF
inhibits autophagy and attenuates myocardial infarction by blocking
p53-mediated myocardin transcription. Nat Commun. 9:292018.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Leads from the MMWR. Recommendations for
protection against viral hepatitis. JAMA. 254:197–198. 1985.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Cramer DW and Elias KM: A prognostically
relevant miRNA signature for epithelial ovarian cancer. Lancet
Oncol. 17:1032–1033. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Krell J, Stebbing J, Frampton AE,
Carissimi C, Harding V, De Giorgio A, Fulci V, Macino G, Colombo T
and Castellano L: The role of TP53 in miRNA loading onto AGO2 and
in remodelling the miRNA-mRNA interaction network. Lancet. 385
(Suppl 1):S152015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y,
Shi H, Xu Y, Qu R, Chai R, et al: MiRNA-320 in the human follicular
fluid is associated with embryo quality in vivo and affects mouse
embryonic development in vitro. Sci Rep. 5:86892015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Collignon J: miRNA in embryonic
development: The taming of Nodal signaling. Dev Cell. 13:458–460.
2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhong YX, Li WS, Liao LS and Liang L:
LncRNA CCAT1 promotes cell proliferation and differentiation via
negative modulation of miRNA-218 in human DPSCs. Eur Rev Med
Pharmacol Sci. 23:3575–3583. 2019.PubMed/NCBI
|
25
|
Hara ES, Ono M, Eguchi T, Kubota S, Pham
HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK and Kuboki T:
miRNA-720 controls stem cell phenotype, proliferation and
differentiation of human dental pulp cells. PLoS One. 8:e835452013.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Shen N, Liu S, Cui J, Li Q, You Y, Zhong
Z, Cheng F, Guo AY, Zou P, Yuan G and Zhu X: Tumor necrosis factor
α knockout impaired tumorigenesis in chronic myeloid leukemia cells
partly by metabolism modification and miRNA regulation. Onco
Targets Ther. 12:2355–2364. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wu A, Lou L, Zhai J, Zhang D, Chai L, Nie
B, Zhu H, Gao Y, Shang H and Zhao M: miRNA expression profile and
effect of Wenxin granule in rats with ligation-induced myocardial
infarction. Int J Genomics. 2017:21758712017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wang ZH, Sun XY, Li CL, Sun YM, Li J, Wang
LF and Li ZQ: miRNA-21 expression in the serum of elderly patients
with acute myocardial infarction. Med Sci Monit. 23:5728–5734.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang L and Jia X: Down-regulation of
miR-30b-5p protects cardiomyocytes against hypoxia-induced injury
by targeting Aven. Cell Mol Biol Lett. 24:612019. View Article : Google Scholar : PubMed/NCBI
|
30
|
American Veterinary Medical Association, .
AVMA guidelines for complementary and alternative veterinary
medicine. J Am Vet Med Assoc. 218:17312001.PubMed/NCBI
|
31
|
Zeng J, Zhu L, Liu J, Zhu T, Xie Z, Sun X
and Zhang H: Metformin protects against oxidative stress injury
induced by ischemia/reperfusion via regulation of the
lncRNA-H19/miR-148a-3p/Rock2 axis. Oxid Med Cell Longev.
2019:87683272019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dhalla NS, Elmoselhi AB, Hata T and Makino
N: Status of myocardial antioxidants in ischemia-reperfusion
injury. Cardiovasc Res. 47:446–456. 2000. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yang D, Yu J, Liu HB, Yan XQ, Hu J, Yu Y,
Guo J, Yuan Y and Du ZM: The long non-coding RNA TUG1-miR-9a-5p
axis contributes to ischemic injuries by promoting cardiomyocyte
apoptosis via targeting KLF5. Cell Death Dis. 10:9082019.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Kroeze A, van Hoeven V, Verheij MW,
Turksma AW, Weterings N, van Gassen S, Zeerleder SS, Blom B,
Voermans C and Hazenberg MD: Presence of innate lymphoid cells in
allogeneic hematopoietic grafts correlates with reduced
graft-versus-host disease. Cytotherapy. 24:302–310. 2022.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yoshimura C, Nagasaka A, Kurose H and
Nakaya M: Efferocytosis during myocardial infarction. J Biochem.
168:1–6. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
González A, Fortuño MA, Querejeta R,
Ravassa S, López B, López N and Díez J: Cardiomyocyte apoptosis in
hypertensive cardiomyopathy. Cardiovasc Res. 59:549–562. 2003.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Zhuo LA, Wen YT, Wang Y, Liang ZF, Wu G,
Nong MD and Miao L: LncRNA SNHG8 is identified as a key regulator
of acute myocardial infarction by RNA-seq analysis. Lipids Health
Dis. 18:2012019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Su Q, Lv XW, Xu YL, Cai RP, Dai RX, Yang
XH, Zhao WK and Kong BH: Exosomal LINC00174 derived from vascular
endothelial cells attenuates myocardial I/R injury via p53-mediated
autophagy and apoptosis. Mol Ther Nucleic Acids. 23:1304–1322.
2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhou T, Qin G, Yang L, Xiang D and Li S:
LncRNA XIST regulates myocardial infarction by targeting
miR-130a-3p. J Cell Physiol. 234:8659–8667. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang G, Sun H, Zhang Y, Zhao H, Fan W, Li
J, Lv Y, Song Q, Li J, Zhang M and Shi H: Characterization of
dysregulated lncRNA-mRNA network based on ceRNA hypothesis to
reveal the occurrence and recurrence of myocardial infarction. Cell
Death Discov. 4:352018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan
L, Yang W, Yuan Y, Xie Y, Yang S, et al: LncRNA PCFL promotes
cardiac fibrosis via miR-378/GRB2 pathway following myocardial
infarction. J Mol Cell Cardiol. 133:188–198. 2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Zhang Y, Hou YM, Gao F, Xiao JW, Li CC and
Tang Y: lncRNA GAS5 regulates myocardial infarction by targeting
the miR-525-5p/CALM2 axis. J Cell Biochem. 120:18678–186788. 2019.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Su T and Shao X, Zhang X, Yang C and Shao
X: Value of circulating miRNA-1 detected within 3 h after the onset
of acute chest pain in the diagnosis and prognosis of acute
myocardial infarction. Int J Cardiol. 307:146–151. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yaoita H, Ogawa K, Maehara K and Maruyama
Y: Apoptosis in relevant clinical situations: Contribution of
apoptosis in myocardial infarction. Cardiovasc Res. 45:630–641.
2000. View Article : Google Scholar : PubMed/NCBI
|
46
|
Song Y, Zhang C, Zhang J, Jiao Z, Dong N,
Wang G, Wang Z and Wang L: Localized injection of miRNA-21-enriched
extracellular vesicles effectively restores cardiac function after
myocardial infarction. Theranostics. 9:2346–2360. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Fan PC, Chen CC, Peng CC, Chang CH, Yang
CH, Yang C, Chu LJ, Chen YC, Yang CW, Chang YS and Chu PH: A
circulating miRNA signature for early diagnosis of acute kidney
injury following acute myocardial infarction. J Transl Med.
17:1392019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Bejerano T, Etzion S, Elyagon S, Etzion Y
and Cohen S: Nanoparticle delivery of miRNA-21 mimic to cardiac
macrophages improves myocardial remodeling after myocardial
infarction. Nano Lett. 18:5885–5891. 2018. View Article : Google Scholar : PubMed/NCBI
|
49
|
Gidlöf O, van der Brug M, Ohman J, Gilje
P, Olde B, Wahlestedt C and Erlinge D: Platelets activated during
myocardial infarction release functional miRNA, which can be taken
up by endothelial cells and regulate ICAM1 expression. Blood.
121:39083917S1–S26. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bao XL, Zhang L and Song WP: LncRNA SNHG1
overexpression regulates the proliferation of acute myeloid
leukemia cells through miR-488-5p/NUP205 axis. Eur Rev Med
Pharmacol Sci. 23:5896–5903. 2019.PubMed/NCBI
|
51
|
Arnold J, Engelmann JC, Schneider N,
Bosserhoff AK and Kuphal S: miR-488-5p and its role in melanoma.
Exp Mol Pathol. 112:1043482020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jing R, Zhong QQ, Long TY, Pan W and Qian
ZX: Downregulated miRNA-26a-5p induces the apoptosis of endothelial
cells in coronary heart disease by inhibiting PI3K/AKT pathway. Eur
Rev Med Pharmacol Sci. 23:4940–4947. 2019.PubMed/NCBI
|
53
|
Dahiya N and Atreya C: MiRNA-103b
downregulates ITGB3 and mediates apoptosis in ex vivo stored human
platelets. Microrna. 10:123–129. 2021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Melzer IM, Fernández SB, Bösser S, Lohrig
K, Lewandrowski U, Wolters D, Kehrloesser S, Brezniceanu ML, Theos
AC, Irusta PM, et al: The Apaf-1-binding protein aven is cleaved by
cathepsin D to unleash its anti-apoptotic potential. Cell Death
Differ. 19:1435–1445. 2012. View Article : Google Scholar : PubMed/NCBI
|