1
|
Culp MB, Soerjomataram I, Efstathiou JA,
Bray F and Jemal A: Recent global patterns in prostate cancer
incidence and mortality rates. Eur Urol. 77:38–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Stanbrough M, Bubley GJ, Ross K, Golub TR,
Rubin MA, Penning TM, Febbo PG and Balk SP: Increased expression of
genes converting adrenal androgens to testosterone in
androgen-independent prostate cancer. Cancer Res. 66:2815–2825.
2006. View Article : Google Scholar : PubMed/NCBI
|
3
|
Knepper PA, Collins JA and Frederick R:
Effects of dexamethasone, progesterone, and testosterone on IOP and
GAGs in the rabbit eye. Investig Ophthalmol Vis Sci. 26:1093–1100.
1985.PubMed/NCBI
|
4
|
Ettinger SL, Sobel R, Whitmore TG, Akbari
M, Bradley DR, Gleave ME and Nelson CC: Dysregulation of sterol
response element-binding proteins and downstream effectors in
prostate cancer during progression to androgen independence. Cancer
Res. 64:2212–2221. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Heemers H, Maes B, Foufelle F, Heyns W,
Verhoeven G and Swinnen JV: Androgens stimulate lipogenic gene
expression in prostate cancer cells by activation of the sterol
regulatory element-binding protein cleavage activating
protein/sterol regulatory element-binding protein pathway. Mol
Endocrinol. 15:1817–1828. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vis AN and Schröder FH: Key targets of
hormonal treatment of prostate cancer. Part 1: The androgen
receptor and steroidogenic pathways. BJU Int. 104:438–448. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Hamad A, Kluk M, Fox J, Park M and Turner
JE: The effects of aromatase inhibitors and selective estrogen
receptor modulators on eye development in the zebrafish (Danio
rerio). Curr Eye Res. 32:819–827. 2007. View Article : Google Scholar : PubMed/NCBI
|
8
|
Deb S, Chin MY, Pham S, Adomat H,
Hurtado-Coll A, Gleave ME and Tomlinson Guns ES: Steroidogenesis in
peripheral and transition zones of human prostate cancer tissue.
Int J Mol Sci. 22:4872021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Torres MJ, López-Moncada F, Herrera D,
Indo S, Lefian A, Llanos P, Tapia J, Castellón EA and Contreras HR:
Endothelin-1 induces changes in the expression levels of
steroidogenic enzymes and increases androgen receptor and
testosterone production in the PC3 prostate cancer cell line. Oncol
Rep. 46:1712021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Hou Z, Yang T, Mei Z, Zhang S, Gao Y, Chen
X, Tan Q, Zhu X, Xu C, Lian J, et al: Tracing steroidogenesis in
prostate biopsy samples to unveil prostate tissue androgen
metabolism characteristics and potential clinical application. J
Steroid Biochem Mol Biol. 210:1058592021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Cunningham JM, Hebbring SJ, McDonnell SK,
Cicek MS, Christensen GB, Wang L, Jacobsen SJ, Cerhan JR, Blute ML,
Schaid DJ and Thibodeau SN: Evaluation of genetic variations in the
androgen and estrogen metabolic pathways as risk factors for
sporadic and familial prostate cancer. Cancer Epidemiol Biomark
Prev. 16:969–978. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Holzbeierlein J, Lal P, LaTulippe E, Smith
A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, et
al: Gene expression analysis of human prostate carcinoma during
hormonal therapy identifies androgen-responsive genes and
mechanisms of therapy resistance. Am J Pathol. 164:217–227. 2004.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Crawford ED, Heidenreich A, Lawrentschuk
N, Tombal B, Pompeo ACL, Mendoza-Valdes A, Miller K, Debruyne FMJ
and Klotz L: Androgen-targeted therapy in men with prostate cancer:
Evolving practice and future considerations. Prostate Cancer
Prostatic Dis. 22:24–38. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Shiota M, Yokomizo A and Naito S:
Pro-survival and anti-apoptotic properties of androgen receptor
signaling by oxidative stress promote treatment resistance in
prostate cancer. Endocr Relat Cancer. 19:R243–R253. 2012.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Montgomery RB, Mostaghel EA, Vessella R,
Hess DL, Kalhorn TF, Higano CS, True LD and Nelson PS: Maintenance
of intratumoral androgens in metastatic prostate cancer: A
mechanism for castration-resistant tumor growth. Cancer Res.
68:4447–4454. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Schiffer L, Barnard L, Baranowski ES,
Gilligan LC, Taylor AE, Arlt W, Shackleton CHL and Storbeck KH:
Human steroid biosynthesis, metabolism and excretion are
differentially reflected by serum and urine steroid metabolomes: A
comprehensive review. J Steroid Biochem Mol Biol. 194:1054392019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Gsur A, Feik E and Madersbacher S: Genetic
polymorphisms and prostate cancer risk. World J Urol. 21:414–423.
2004. View Article : Google Scholar : PubMed/NCBI
|
18
|
Evaul K, Li R, Papari-Zareei M, Auchus RJ
and Sharifi N: 3beta-hydroxysteroid dehydrogenase is a possible
pharmacological target in the treatment of castration-resistant
prostate cancer. Endocrinol. 151:3514–3520. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mason JI, Keeney DS, Bird IM, Rainey WE,
Morohashi K, Leers-Sucheta S and Melner MH: The regulation of 3
beta-hydroxysteroid dehydrogenase expression. Steroids. 62:164–168.
1997. View Article : Google Scholar : PubMed/NCBI
|
20
|
Simard J, Ricketts ML, Gingras S, Soucy P,
Feltus FA and Melner MH: Molecular biology of the
3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene
family. Endocr Rev. 26:525–582. 2005. View Article : Google Scholar : PubMed/NCBI
|
21
|
Rhéaume E, Lachance Y, Zhao HF, Breton N,
Dumont M, de Launoit Y, Trudel C, Luu-The V, Simard J and Labrie F:
Structure and expression of a new complementary DNA encoding the
almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta
4-isomerase in human adrenals and gonads. Mol Endocrinol.
5:1147–1157. 1991. View Article : Google Scholar : PubMed/NCBI
|
22
|
Schiffer L, Arlt W and Storbeck KH:
Intracrine androgen biosynthesis, metabolism and action revisited.
Mol Cell Endocrinol. 465:4–26. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Silva SA, Gobbo MG, Pinto-Fochi ME,
Rafacho A, Taboga SR, Almeida EA, Góes RM and Ribeiro DL: Prostate
hyperplasia caused by long-term obesity is characterized by high
deposition of extracellular matrix and increased content of MMP-9
and VEGF. Int J Exp Pathol. 96:21–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Edlund M, Sung SY and Chung LW: Modulation
of prostate cancer growth in bone microenvironments. J Cell
Biochem. 91:686–705. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Trudel D, Fradet Y, Meyer F, Harel F and
Têtu B: Significance of MMP-2 expression in prostate cancer: An
immunohistochemical study. Cancer Res. 63:8511–8515.
2003.PubMed/NCBI
|
26
|
Xie T, Dong B, Yan Y, Hu G and Xu Y:
Association between MMP-2 expression and prostate cancer: A
meta-analysis. Biomed Rep. 4:241–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gong Y, Chippada-Venkata UD and Oh WK:
Roles of matrix metalloproteinases and their natural inhibitors in
prostate cancer progression. Cancers (Basel). 6:1298–1327. 2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Abdelaal MR, Soror SH, Elnagar MR and
Haffez H: Revealing the potential application of EC-synthetic
retinoid analogues in anticancer therapy. Molecules. 26:5062021.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Nemeth JA, Yousif R, Herzog M, Che M,
Upadhyay J, Shekarriz B, Bhagat S, Mullins C, Fridman R and Cher
ML: Matrix metalloproteinase activity, bone matrix turnover, and
tumor cell proliferation in prostate cancer bone metastasis. J Natl
Cancer Inst. 94:17–25. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Overall CM and López-Otín C: Strategies
for MMP inhibition in cancer: Innovations for the post-trial era.
Nat Rev Cancer. 2:657–672. 2002. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Chang KH, Li R, Kuri B, Lotan Y, Roehrborn
CG, Liu J, Vessella R, Nelson PS, Kapur P, Guo X, et al: A
gain-of-function mutation in DHT synthesis in castration-resistant
prostate cancer. Cell. 154:1074–1084. 2013. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sabharwal N and Sharifi N: HSD3B1
genotypes conferring adrenal-restrictive and adrenal-permissive
phenotypes in prostate cancer and beyond. Endocrinology.
160:2180–2188. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen ZTY, Wang IJ, Liao YT, Shih YF and
Lin LLK: Polymorphisms in steroidogenesis genes, sex steroid
levels, and high myopia in the Taiwanese population. Mol Vis.
17:2297–2310. 2011.PubMed/NCBI
|
34
|
Cho LY, Yang JJ, Ko KP, Ma SH, Shin A,
Choi BY, Han DS, Song KS, Kim YS, Chang SH, et al: Genetic
susceptibility factors on genes involved in the steroid hormone
biosynthesis pathway and progesterone receptor for gastric cancer
risk. PLoS One. 7:e476032012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Carmichael S, Witte J, Ma C, Lammer E and
Shaw G: Hypospadias and variants in genes related to sex hormone
biosynthesis and metabolism. Andrology. 2:130–137. 2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shimodaira M, Nakayama T, Sato I, Sato N,
Izawa N, Mizutani Y, Furuya K and Yamamoto T: Estrogen synthesis
genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of
pregnancy. Endocrine. 42:700–707. 2012. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shimodaira M, Nakayama T, Sato N, Aoi N,
Sato M, Izumi Y, Soma M and Matsumoto K: Association of HSD3B1 and
HSD3B2 gene polymorphisms with essential hypertension, aldosterone
level, and left ventricular structure. Eur J Endocrinol.
163:671–810. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gao H, Xu J, Ma Q, Tang F, Ga Q, Li Y,
Guan W, Ge R and Yang YZ: Association between the polymorphism of
steroid hormone metabolism genes and high-altitude pulmonary edema
in the Chinese Han population. Int J Gen Med. 15:787–794. 2022.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Mohler JL, Armstrong AJ, Bahnson RR,
Boston B, Busby JE, D'Amico AV, Eastham JA, Enke CA, Farrington T,
Higano CS, et al: Prostate cancer, version 3.2012: Featured updates
to the NCCN guidelines. J Natl Compr Canc Netw. 10:1081–1087. 2012.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Cormio L, Lucarelli G, Netti GS, Stallone
G, Selvaggio O, Troiano F, Di Fino G, Sanguedolce F, Bufo P,
Grandaliano G and Carrieri G: Post-void residual urinary volume is
an independent predictor of biopsy results in men at risk for
prostate cancer. Anticancer Res. 35:2175–2182. 2015.PubMed/NCBI
|
41
|
Jeong CW, Hong SK, Byun SS, Jeon SS, Seo
SI, Lee HM, Ahn H, Kwon DD, Ha HK, Kwon TG, et al: Selection
criteria for active surveillance of patients with prostate cancer
in Korea: A multicenter analysis of pathology after radical
prostatectomy. Cancer Res Treat. 50:265–274. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Solanki AA, Schroth CA, Authier C, Carlson
K, Garraway I, Haegerich T, Henry E, Jones JA, Joseph R, Koppes T,
et al: Veterans affairs seamless phase II/III randomized trial of
standard systemic therapy with or without PET-directed local
therapy for oligorecurrent prostate cancer (VA STARPORT). J Clin
Oncol. 40 (Suppl 6):TPS2032022. View Article : Google Scholar
|
43
|
Jiang Y, Meyers TJ, Emeka AA, Cooley LF,
Cooper PR, Lancki N, Helenowski I, Kachuri L, Lin DW, Stanford JL,
et al: Genetic factors associated with prostate cancer conversion
from active surveillance to treatment. HGG Adv.
3:1000702022.PubMed/NCBI
|
44
|
Barrett JC, Fry B, Maller J and Daly MJ:
Haploview: Analysis and visualization of LD and haplotype maps.
Bioinformatics. 21:263–265. 2005. View Article : Google Scholar : PubMed/NCBI
|
45
|
Litwin MS and Tan HJ: The diagnosis and
treatment of prostate cancer: A review. JAMA. 317:2532–2542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Adhyam M and Gupta AK: A review on the
clinical utility of PSA in cancer prostate. Indian J Surg Oncol.
3:120–129. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wu G, Huang S, Nastiuk KL, Li J, Gu J, Wu
M, Zhang Q, Lin H and Wu D: Variant allele of HSD3B1 increases
progression to castration-resistant prostate cancer. Prostate.
75:777–782. 2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Sharifi N, McPhaul MJ and Auchus RJ:
‘Getting from here to there’-mechanisms and limitations to the
activation of the androgen receptor in castration-resistant
prostate cancer. J Investig Med. 58:938–944. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Dai C, Heemers H and Sharifi N: Androgen
signaling in prostate cancer. Cold Spring Harb Perspect Med.
7:a0304522017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mendell JT and Dietz HC: When the message
goes awry: Disease-producing mutations that influence mRNA content
and performance. Cell. 107:411–414. 2001. View Article : Google Scholar : PubMed/NCBI
|
51
|
Nicholson P, Yepiskoposyan H, Metze S,
Zamudio Orozco R, Kleinschmidt N and Mühlemann O: Nonsense-mediated
mRNA decay in human cells: Mechanistic insights, functions beyond
quality control and the double-life of NMD factors. Cell Mol Life
Sci. 67:677–700. 2010. View Article : Google Scholar : PubMed/NCBI
|
52
|
Beaudoin JD and Perreault JP: 5′-UTR
G-quadruplex structures acting as translational repressors. Nucleic
Acids Res. 38:7022–7036. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Robert F and Pelletier J: Exploring the
impact of single-nucleotide polymorphisms on translation. Front
Genet. 507:5072018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Das SC, Rahman M and Das Gupta S:
In-silico analysis unravels the structural and functional
consequences of non-synonymous SNPs in the human IL-10 gene. Egypt
J Med Hum Genet. 23:1–14. 2022. View Article : Google Scholar
|
55
|
Kucukkal TG, Petukh M, Li L and Alexov E:
Structural and physico-chemical effects of disease and non-disease
nsSNPs on proteins. Curr Opin Struct Biol. 32:18–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Gebert M, Jaśkiewicz M, Moszyńska A,
Collawn JF and Bartoszewski R: The effects of single nucleotide
polymorphisms in cancer RNAi therapies. Cancers (Basel).
12:31192020. View Article : Google Scholar : PubMed/NCBI
|
57
|
Park JY, Tanner JP, Sellers TA, Huang Y,
Stevens CK, Dossett N, Shankar RA, Zachariah B, Heysek R and
Pow-Sang J: Association between polymorphisms in HSD3B1 and UGT2B17
and prostate cancer risk. Urology. 70:374–379. 2007. View Article : Google Scholar : PubMed/NCBI
|
58
|
Han FF, Ren LL, Xuan LL, Lv YL, Liu H,
Gong LL, An ZL and Liu LH: HSD3B1 variant and androgen-deprivation
therapy outcome in prostate cancer. Cancer Chemother Pharmacol.
87:103–112. 2021. View Article : Google Scholar : PubMed/NCBI
|
59
|
Setlur SR, Chen CX, Hossain RR, Ha JS, Van
Doren VE, Stenzel B, Steiner E, Oldridge D, Kitabayashi N, Banerjee
S, et al: Genetic variation of genes involved in
dihydrotestosterone metabolism and the risk of prostate cancer.
Cancer Epidemiol Biomark Prev. 19:229–239. 2010. View Article : Google Scholar : PubMed/NCBI
|
60
|
Huang J, Huang D and Na R: The association
between genetic variants in HSD3B1 and clinical management of PCa.
J Transl Genet Genom. 5:240–249. 2021.PubMed/NCBI
|
61
|
Devgan SA, Henderson BE, Yu MC, Shi CY,
Pike MC, Ross RK and Reichardt JK: Genetic variation of 3
beta-hydroxysteroid dehydrogenase type II in three racial/ethnic
groups: Implications for prostate cancer risk. Prostate. 33:9–12.
1997. View Article : Google Scholar : PubMed/NCBI
|
62
|
Kosaka T, Miyajima A and Oya M: Is DHT
production by 5α-reductase friend or foe in prostate cancer? Front
Oncol. 4:2472014. View Article : Google Scholar : PubMed/NCBI
|
63
|
Stangl-Kremser J, Lemberger U, Hassler MR,
Bruchbacher A, Ilijazi D, Garstka N, Kramer G, Haitel A, Abufaraj M
and Shariat SF: Prevalence and prognostic value of the polymorphic
variant 1245A>C of HSD3B1 in castration-resistant prostate
cancer. Clin Genitourin Cancer. 17:389–394. 2019. View Article : Google Scholar : PubMed/NCBI
|
64
|
Johns L and Houlston R: A systematic
review and meta-analysis of familial prostate cancer risk. BJU Int.
91:789–794. 2003. View Article : Google Scholar : PubMed/NCBI
|
65
|
Barber L, Gerke T, Markt SC, Peisch SF,
Wilson KM, Ahearn T, Giovannucci E, Parmigiani G and Mucci LA:
Family history of breast or prostate cancer and prostate cancer
risk. Clin Cancer Res. 24:5910–5917. 2018. View Article : Google Scholar : PubMed/NCBI
|
66
|
Chen YC, Page JH, Chen R and Giovannucci
E: Family history of prostate and breast cancer and the risk of
prostate cancer in the PSA era. Prostate. 68:1582–1591. 2008.
View Article : Google Scholar : PubMed/NCBI
|
67
|
Thomas JA II, Gerber L, Moreira DM,
Hamilton RJ, Bañez LL, Castro-Santamaria R, Andriole GL, Isaacs WB,
Xu J and Freedland SJ: Prostate cancer risk in men with prostate
and breast cancer family history: Results from the REDUCE study
(R1). J Intern Med. 272:85–92. 2012. View Article : Google Scholar : PubMed/NCBI
|
68
|
Cunningham GR, Ashton CM, Annegers JF,
Souchek J, Klima M and Miles B: Familial aggregation of prostate
cancer in African-Americans and white Americans. Prostate.
56:256–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
69
|
Steinberg GD, Carter BS, Beaty TH, Childs
B and Walsh PC: Family history and the risk of prostate cancer.
Prostate. 17:337–347. 1990. View Article : Google Scholar : PubMed/NCBI
|
70
|
Acheampong E, Adu EA, Obirikorang C, Amoah
G, Afriyie OO, Yorke J and Yeboah FA: Association of genetic
variants with prostate cancer in Africa: A concise review. Egypt J
Med Hum Genet. 22:1–9. 2021. View Article : Google Scholar
|
71
|
Kasper JS, Liu Y and Giovannucci E:
Diabetes mellitus and risk of prostate cancer in the health
professionals follow-up study. Int J Cancer. 124:1398–1403. 2009.
View Article : Google Scholar : PubMed/NCBI
|
72
|
Bonovas S, Filioussi K and Tsantes A:
Diabetes mellitus and risk of prostate cancer: A meta-analysis.
Diabetologia. 47:1071–1078. 2004. View Article : Google Scholar : PubMed/NCBI
|
73
|
Feng X, Song M, Preston MA, Ma W, Hu Y,
Pernar CH, Stopsack KH, Ebot EM, Fu BC, Zhang Y, et al: The
association of diabetes with risk of prostate cancer defined by
clinical and molecular features. Br J Cancer. 123:657–665. 2020.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Chan JM, Latini DM, Cowan J, Duchane J and
Carroll PR: History of diabetes, clinical features of prostate
cancer, and prostate cancer recurrence-data from CaPSURE (United
States). Cancer Causes Control. 16:789–797. 2005. View Article : Google Scholar : PubMed/NCBI
|
75
|
Au Yeung SL and Schooling CM: Impact of
glycemic traits, type 2 diabetes and metformin use on breast and
prostate cancer risk: A Mendelian randomization study. BMJ Open
Diabetes Res Care. 7:e0008722019. View Article : Google Scholar : PubMed/NCBI
|
76
|
Wu C, Moreira DM, Gerber L, Rittmaster RS,
Andriole GL and Freedland SJ: Diabetes and prostate cancer risk in
the REDUCE trial. Prostate Cancer Prostatic Dis. 14:326–331. 2011.
View Article : Google Scholar : PubMed/NCBI
|
77
|
Li Q, Kuriyama S, Kakizaki M, Yan H, Sone
T, Nagai M, Sugawara Y, Ohmori-Matsuda K, Hozawa A, Nishino Y and
Tsuji I: History of diabetes mellitus and the risk of prostate
cancer: The Ohsaki cohort study. Cancer Causes Control.
21:1025–1032. 2010. View Article : Google Scholar : PubMed/NCBI
|
78
|
Park J, Cho SY, Lee YJ, Lee SB, Son H and
Jeong H: Poor glycemic control of diabetes mellitus is associated
with higher risk of prostate cancer detection in a biopsy
population. PLoS One. 9:e1047892014. View Article : Google Scholar : PubMed/NCBI
|
79
|
Leitzmann MF, Ahn J, Albanes D, Hsing AW,
Schatzkin A, Chang SC, Huang WY, Weiss JM, Danforth KN, Grubb RL
III, et al: Diabetes mellitus and prostate cancer risk in the
prostate, lung, colorectal, and ovarian cancer screening trial.
Cancer Causes Control. 19:1267–1276. 2008. View Article : Google Scholar : PubMed/NCBI
|
80
|
Fall K, Garmo H, Gudbjörnsdottir S,
Stattin P and Zethelius B: Diabetes mellitus and prostate cancer
risk; a nationwide case-control study within PCBaSe Sweden. Cancer
Epidemiol Biomarkers Prev. 22:1102–1109. 2013. View Article : Google Scholar : PubMed/NCBI
|
81
|
Moreira DM, Anderson T, Gerber L, Thomas
JA, Bañez LL, McKeever MG, Hoyo C, Grant D, Jayachandran J and
Freedland SJ: The association of diabetes mellitus and high-grade
prostate cancer in a multiethnic biopsy series. Cancer Causes
Control. 22:977–983. 2011. View Article : Google Scholar : PubMed/NCBI
|