1
|
Macdonald J and Asiedu K: WAWLC: World
alliance for wound and lymphedema care. Wounds. 22:55–59.
2010.PubMed/NCBI
|
2
|
Hill KE, Malic S, McKee R, Rennison T,
Harding KG, Williams DW and Thomas DW: An in vitro model of chronic
wound biofilms to test wound dressings and assess antimicrobial
susceptibilities. J Antimicrob Chemother. 65:1195–1206. 2010.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Yarwood JM and Schlievert PM: Quorum
sensing in staphylococcus infections. J Clin Invest. 112:1620–1625.
2003. View Article : Google Scholar
|
4
|
Larsen JA and Overstreet J: Pulsed radio
frequency energy in the treatment of complex diabetic foot wounds:
Two cases. J Wound Ostomy Continence Nurs. 35:523–527. 2008.
View Article : Google Scholar : PubMed/NCBI
|
5
|
European Committee on Antimicrobial
Susceptibility Testing (EUCAST), . Breakpoint tables for
interpretation of MICs and zone diameters. Version 12.0. EUCAST;
Växjö: 2022, https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdfJanuary
1–2022
|
6
|
Selim S: Mechanisms of gram-positive
vancomycin resistance (Review). Biomed Rep. 16:72022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Manandhar S, Singh A, Varma A, Pandey S
and Shrivastava N: Biofilm producing clinical staphylococcus aureus
isolates augmented prevalence of antibiotic resistant cases in
tertiary care hospitals of Nepal. Front Microbiol. 9:27492018.
View Article : Google Scholar
|
8
|
Malone M, Bjarnsholt T, McBain AJ, James
GA, Stoodley P, Leaper D, Tachi M, Schultz G, Swanson T and Wolcott
RD: The prevalence of biofilms in chronic wounds: a systematic
review and meta-analysis of published data. J Wound Care. 26:20–25.
2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Moormeier DE and Bayles KW: Staphylococcus
aureus biofilm: A complex developmental organism. Mol Microbiol.
104:365–376. 2017. View Article : Google Scholar
|
10
|
Irschik H, Schummer D, Gerth K, Höfle G
and Reichenbach H: The tartrolons, new boron-containing antibiotics
from a myxobacterium, Sorangium cellulosum. J Antibiot (Tokyo).
48:26–30. 1995. View Article : Google Scholar : PubMed/NCBI
|
11
|
Soriano-Ursúa MA, Das BC and
TrujILlo-Ferrara JG: Boron-containing compounds: Chemico-biological
properties and expanding medicinal potential in prevention,
diagnosis and therapy. Expert Opin Ther Pat. 24:485–500. 2014.
View Article : Google Scholar
|
12
|
Field MC, Horn D, Fairlamb AH, Ferguson
MA, Gray DW, Read KD, De Rycker M, Torrie LS, Wyatt PG, Wyllie S
and Gilbert IH: Anti-trypanosomatid drug discovery: An ongoing
challenge and a continuing need. Nat Rev Microbiol. 15:217–231.
2017. View Article : Google Scholar
|
13
|
Wall RJ, Rico E, Lukac I, Zuccotto F, Elg
S, Gilbert IH, Freund Y, Alley MR, Field MC, Wyllie S and Horn D:
Clinical and veterinary trypanocidal benzoxaboroles target CPSF3.
Proc Natl Acad Sci USA. 115:9616–9621. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Castanheira M, Huband MD, Mendes RE and
Flamm RK: Meropenem-vaborbactam tested against contemporary
gram-negative isolates collected worldwide during 2014, including
carbapenem-resistant, KPC-producing, multidrug-resistant, and
extensively drug-resistant enterobacteriaceae. Antimicrob Agents
Chemother. 61:e00567–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang F, Zhu M, Zhang J and Zhou H:
Synthesis of biologically active boron-containing compounds.
Medchemcomm. 9:201–211. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Das BC, Thapa P, Karki R, Schinke C, Das
S, Kambhampati S, Banerjee SK, Van Veldhuizen P, Verma A, Weiss LM
and Evans T: Boron chemicals in diagnosis and therapeutics. Future
Med Chem. 5:653–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Jiang L, Zhao YM and Yang MZ: Inhibition
of autophagy enhances apoptosis induced by bortezomib in AML cells.
Oncol Lett. 21:1092021. View Article : Google Scholar
|
18
|
Tanaka M and Fujiwara T: Physiological
roles and transport mechanisms of boron: Perspectives from plants.
Pflugers Arch. 456:671–677. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Iavazzo C, Gkegkes ID, Zarkada IM and
Falagas ME: Boric acid for recurrent vulvovaginal candidiasis: The
clinical evidence. J Womens Health (Larchmt). 20:1245–1255. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Borrelly J, Blech MF, Grosdidier G,
Martin-Thomas C and Hartemann P: Contribution of a 3% solution of
boric acid in the treatment of deep wounds with loss of substance.
Ann Chir Plast Esthet. 36:65–9. 1991.(In French).
|
21
|
Nzietchueng RM, Dousset B, Franck P,
Benderdour M, Nabet P and Hess K: Mechanisms implicated in the
effects of boron on wound healing. J Trace Elem Med Biol.
16:239–244. 2002. View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Valavanidis A, Vlachogianni T and Fiotakis
C: 8-hydroxy-2-deoxyguanosine (8-OHdG): A critical biomarker of
oxidative stress and carcinogenesis. J Environ Sci Health C Environ
Carcinog Ecotoxical Rev. 27:120–139. 2009. View Article : Google Scholar
|
24
|
Demirci S, Doğan A, Karakuş E, Halıcı Z,
Topçu A, Demirci E and Sahin F: Boron and poloxamer (F68 and F127)
containing hydrogel formulation for burn wound healing. Biol Trace
Elem Res. 168:169–180. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
National Committee for Clinical Laboratory
Standards (NCCLS), . Performance standards for antimicrobial disk
susceptibility tests. Approved standard. NCCLS document M2-A5.
NCCLS; Villanova, PA: pp. 138–144. 1993
|
26
|
O'Toole GA: Classic spotlight: How the
gram stain works. J Bacteriol. 198:31282016. View Article : Google Scholar
|
27
|
Yilmaz MT: Minimum inhibitory and minimum
bactericidal concentrations of boron compounds against several
bacterial strains. Turk J Med Sci. 42:1423–1429. 2012.
|
28
|
Çomaklı S, Sevim Ç, Kontadakis G, Doğan E,
Taghizadehghalehjoughi A, Özkaraca M, Aschner M, Nikolouzakis TK
and Tsatsakis A: Acute glufosinate-based herbicide treatment in
rats leads to increased ocular interleukin-1β and c-Fos protein
levels, as well as intraocular pressure. Toxicol Rep. 6:155–160.
2019. View Article : Google Scholar
|
29
|
Kinoshita PF, Yshii LM, Orellana A, Paixão
AG, Vasconcelos AR, Lima LS, Kawamoto EM and Scavone C: Alpha 2
Na+, K+-ATPase silencing induces loss of inflammatory response and
ouabain protection in glial cells. Sci Rep. 7:48942017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shinde DB, Koratkar SS, Sharma N and
Shitole AA: Antioxidant activity and antiproliferative action of
methanolic extract of liquorice (Glycyrrhiza Glabra) in Hepg2 cell
line. Int J Pharm Pharmaceut Sci. 8:293–298. 2016. View Article : Google Scholar
|
31
|
World Health Organization (WHO), . Global
Priority List of Antibiotic-Resistant Bacteria to Guide Research,
Discovery, and Development of New Antibiotics. WHO; Geneva: 2017,
https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededJuly
5–2022
|
32
|
Suci PA, Mittelman MW, Yu FP and Geesey
GG: Investigation of ciprofloxacin penetration into pseudomonas
aeruginosa biofilms. Antimicrob Agents Chemother. 38:2125–2133.
1994. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rachid S, Ohlsen K, Witte W, Hacker J and
Ziebuhr W: Effect of subinhibitory antibiotic concentrations on
polysaccharide intercellular adhesin expression in biofilm-forming
Staphylococcus epidermidis. Antimicrob Agents Chemother.
44:3357–3363. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ni N, Li M, Wang J and Wang B: Inhibitors
and antagonists of bacterial quorum sensing. Med Res Rev.
29:65–124. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sayin Z, Ucan US and Sakmanoglu A:
Antibacterial and antibiofilm effects of boron on different
bacteria. Biol Trace Elem Res. 173:241–246. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Nisha S, Shivamallu AB, Gujjari SK,
Shashikumar P, Ali NM and Kulkarni M: Efficacy of preprocedural
boric acid mouthrinse in reducing viable bacteria in dental
aerosols produced during ultrasonic scaling. Contemp Clin Dent.
12:282–288. 2021. View Article : Google Scholar
|
37
|
Martínez SR, Aiassa V, Sola C and Becerra
MC: Oxidative stress response in reference and clinical
Staphylococcus aureus strains under Linezolid exposure. J Glob
Antimicrob Resist. 22:257–262. 2020. View Article : Google Scholar
|
38
|
Idiz UO, Aysan E, Firat D, Ercan C,
Demirci S and Sahin F: Effects of boric acid-linked ampicillin on
the rat intra-abdominal sepsis model. Pak J Pharm Sci. 32:477–481.
2019.
|
39
|
Tekeli H, Asıcı GSE and Bildik A:
Anti-inflammatory effect of boric acid on cytokines in
ovariectomy-induced rats. Cell Mol Biol. 67:313–320. 2022.
View Article : Google Scholar
|
40
|
Geyikoglu F, Koc K, Erol HS, Colak S, Ayer
H, Jama S, Eser G, Dortbudak MB and Saglam YS: The propolis and
boric acid can be highly suitable, alone/or as a combinatory
approach on ovary ischemia-reperfusion injury. Arch Gynecol Obstet.
300:1405–1412. 2019. View Article : Google Scholar
|
41
|
Yu J, Yang Y, Li S and Meng P: Salinomycin
triggers prostate cancer cell apoptosis by inducing oxidative and
endoplasmic reticulum stress via suppressing Nrf2 signaling. Exp
Ther Med. 22:9462021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Skaperda Z, Kyriazis D.I, Vardakas P,
Tekos F, Antoniou K, Giannakeas N and Kouretas D: In vitro
antioxidant properties of herb decoction extracts derived from
Epirus, Greece. Int J Funct Nutr. 2:112021. View Article : Google Scholar
|