1
|
Vos TA, Hooiveld GJ, Koning H, Childs S,
Meijer DK, Moshage H, Jansen PL and Müller M: Up-regulation of the
multidrug resistance genes, Mrp1 and Mdr1b, and down–regulation of
the organic anion transporter, Mrp2, and the bile salt transporter,
Spgp, in endotoxemic rat liver. Hepatology. 28:1637–1644. 1998.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Hartmann G, Vassileva V and
Piquette-Miller M: Impact of endotoxin-induced changes in
P-glycoprotein expression on disposition of doxorubicin in mice.
Drug Metab Dispos. 33:820–828. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kawase A, Nakasaka M, Bando H, Yasuda S,
Shimada H and Iwaki M: Changes in radixin expression and
interaction with efflux transporters in the liver of
adjuvant-induced arthritic rats. Inflammation. 43:85–94. 2020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kawase A, Norikane S, Okada A, Adachi M,
Kato Y and Iwaki M: Distinct alterations in ATP-binding cassette
transporter expression in liver, kidney, small intestine, and brain
in adjuvant-induced arthritic rats. J Pharm Sci. 103:2556–2564.
2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Rouhiainen A, Kuja-Panula J, Wilkman E,
Pakkanen J, Stenfors J, Tuominen RK, Lepäntalo M, Carpén O,
Parkkinen J and Rauvala H: Regulation of monocyte migration by
amphoterin (HMGB1). Blood. 104:1174–1182. 2004. View Article : Google Scholar : PubMed/NCBI
|
6
|
Scaffidi P, Misteli T and Bianchi ME:
Release of chromatin protein HMGB1 by necrotic cells triggers
inflammation. Nature. 418:191–195. 2002. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yu M, Wang H, Ding A, Golenbock DT, Latz
E, Czura CJ, Fenton MJ, Tracey KJ and Yang H: HMGB1 signals through
toll-like receptor (TLR) 4 and TLR2. Shock. 26:174–179. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Hreggvidsdóttir HS, Lundberg AM, Aveberger
AC, Klevenvall L, Andersson U and Harris HE: High mobility group
box protein 1 (HMGB1)-partner molecule complexes enhance cytokine
production by signaling through the partner molecule receptor. Mol
Med. 18:224–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhang C, Dong H, Chen F, Wang Y, Ma J and
Wang G: The HMGB1-RAGE/TLR-TNF-α signaling pathway may contribute
to kidney injury induced by hypoxia. Exp Ther Med. 17:17–26.
2019.PubMed/NCBI
|
10
|
Godowski PJ: A smooth operator for LPS
responses. Nat Immunol. 6:544–546. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhong H, Li X, Zhou S, Jiang P, Liu X,
Ouyang M, Nie Y, Chen X, Zhang L, Liu Y, et al: Interplay between
RAGE and TLR4 regulates HMGB1-induced inflammation by promoting
cell surface expression of RAGE and TLR4. J Immunol. 205:767–775.
2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Park JS, Svetkauskaite D, He Q, Kim JY,
Strassheim D, Ishizaka A and Abraham E: Involvement of toll-like
receptors 2 and 4 in cellular activation by high mobility group box
1 protein. J Biol Chem. 279:7370–7377. 2004. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lotze MT and Tracey KJ: High-mobility
group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal.
Nat Rev Immunol. 5:331–342. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen GY, Tang J, Zheng P and Liu Y: CD24
and Siglec-10 selectively repress tissue damage-induced immune
responses. Science. 323:1722–1725. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen Y, Huang XJ, Yu N, Xie Y, Zhang K,
Wen F, Liu H and Di Q: HMGB1 contributes to the expression of
P-glycoprotein in mouse epileptic brain through toll-like receptor
4 and receptor for advanced glycation end products. PLoS One.
10:e01409182015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xie Y, Yu N, Chen Y, Zhang K, Ma HY and Di
Q: HMGB1 regulates P-glycoprotein expression in status epilepticus
rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep.
16:1691–1700. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang F, Ji S, Wang M, Liu L, Li Q, Jiang
F, Cen J and Ji B: HMGB1 promoted P-glycoprotein at the blood-brain
barrier in MCAO rats via TLR4/NF-κB signaling pathway. Eur J
Pharmacol. 880:1731892020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mollica L, De Marchis F, Spitaleri A,
Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L,
Musco G and Bianchi ME: Glycyrrhizin binds to high-mobility group
box 1 protein and inhibits its cytokine activities. Chem Biol.
14:431–441. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kim SW, Jin Y, Shin JH, Kim ID, Lee HK,
Park S, Han PL and Lee JK: Glycyrrhizic acid affords robust
neuroprotection in the postischemic brain via anti-inflammatory
effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol
Dis. 46:147–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Tsoyi K, Lee TY, Lee YS, Kim HJ, Seo HG,
Lee JH and Chang KC: Heme-oxygenase-1 induction and carbon
monoxide-releasing molecule inhibit lipopolysaccharide
(LPS)-induced high-mobility group box 1 release in vitro and
improve survival of mice in LPS- and cecal ligation and
puncture-induced sepsis model in vivo. Mol Pharmacol. 76:173–182.
2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim YM, Kim HJ and Chang KC: Glycyrrhizin
reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7
cells and endotoxemic mice by p38/Nrf2-dependent induction of HO-1.
Int Immunopharmacol. 26:112–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wong ML, Xie B, Beatini N, Phu P, Marathe
S, Johns A, Gold PW, Hirsch E, Williams KJ, Licinio J and Tabas I:
Acute systemic inflammation up-regulates secretory sphingomyelinase
in vivo: A possible link between inflammatory cytokines and
atherogenesis. Proc Natl Acad Sci USA. 97:8681–8686. 2000.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Kawase A, Tateishi S and Kazaoka A:
Profiling of hepatic metabolizing enzymes and nuclear receptors in
rats with adjuvant arthritis by targeted proteomics. Biopharm Drug
Dispos. 39:308–314. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kawase A, Kazaoka A, Yamamoto R, Minakata
R, Shimada H and Iwaki M: Changes in transporters and metabolizing
enzymes in the livers of rats with bile duct ligation. J Pharm
Pharm Sci. 22:457–465. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sunman JA, Hawke RL, LeCluyse EL and
Kashuba ADM: Kupffer cell-mediated IL-2 suppression of CYP3A
activity in human hepatocytes. Drug Metab Dispos. 32:359–363. 2004.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Hartmann G, Kim H and Piquette-Miller M:
Regulation of the hepatic multidrug resistance gene expression by
endotoxin and inflammatory cytokines in mice. Int Immunopharmacol.
1:189–199. 2001. View Article : Google Scholar : PubMed/NCBI
|
27
|
Goralski KB, Hartmann G, Piquette-Miller M
and Renton KW: Downregulation of mdr1a expression in the brain and
liver during CNS inflammation alters the in vivo disposition of
digoxin. Br J Pharmacol. 139:35–48. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ogiku M, Kono H, Hara M, Tsuchiya M and
Fujii H: Glycyrrhizin prevents liver injury by inhibition of
high-mobility group box 1 production by Kupffer cells after
ischemia-reperfusion in rats. J Pharmacol Exp Ther. 339:93–98.
2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Shi X, Yu L, Zhang Y, Liu Z, Zhang H,
Zhang Y, Liu P and Du P: Glycyrrhetinic acid alleviates hepatic
inflammation injury in viral hepatitis disease via a HMGB1-TLR4
signaling pathway. Int Immunopharmacol. 84:1065782020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Chen Q, Shi C, Jiao F and Gong Z:
Mechanism of glycyrrhizin on ferroptosis during acute liver failure
by inhibiting oxidative stress. Mol Med Rep. 20:4081–4090.
2019.PubMed/NCBI
|
31
|
Ketloy C, Engering A, Srichairatanakul U,
Limsalakpetch A, Yongvanitchit K, Pichyangkul S and Ruxrungtham K:
Expression and function of Toll-like receptors on dendritic cells
and other antigen presenting cells from non-human primates. Vet
Immunol Immunopathol. 125:18–30. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Hornung V, Rothenfusser S, Britsch S, Krug
A, Jahrsdörfer B, Giese T, Endres S and Hartmann G: Quantitative
expression of toll-like receptor 1–10 mRNA in cellular subsets of
human peripheral blood mononuclear cells and sensitivity to CpG
oligodeoxynucleotides. J Immunol. 168:4531–4537. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rehli M: Of mice and men: Species
variations of toll-like receptor expression. Trends Immunol.
23:375–378. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang B, Ramesh G, Uematsu S, Akira S and
Reeves WB: TLR4 signaling mediates inflammation and tissue injury
in nephrotoxicity. J Am Soc Nephrol. 19:923–932. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
West AP, Koblansky AA and Ghosh S:
Recognition and signaling by toll-like receptors. Annu Rev Cell Dev
Biol. 22:409–437. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Rothfuchs AG, Trumstedt C, Wigzell H and
Rottenberg ME: Intracellular bacterial infection-induced IFN-gamma
is critically but not solely dependent on Toll-like receptor
4-myeloid differentiation factor 88-IFN-alpha beta-STAT1 signaling.
J Immunol. 172:6345–6353. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhang B, Ramesh G, Norbury CC and Reeves
WB: Cisplatin-induced nephrotoxicity is mediated by tumor necrosis
factor-alpha produced by renal parenchymal cells. Kidney Int.
72:37–44. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Fan HY, Qi D, Yu C, Zhao F, Liu T, Zhang
ZK, Yang MY, Zhang LM, Chen DQ and Du Y: Paeonol protects
endotoxin-induced acute kidney injury: Potential mechanism of
inhibiting TLR4-NF-κB signal pathway. Oncotarget. 7:39497–39510.
2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Hreggvidsdottir HS, Ostberg T, Wähämaa H,
Schierbeck H, Aveberger AC, Klevenvall L, Palmblad K, Ottosson L,
Andersson U and Harris HE: The alarmin HMGB1 acts in synergy with
endogenous and exogenous danger signals to promote inflammation. J
Leukoc Biol. 86:655–662. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wähämaa H, Schierbeck H, Hreggvidsdottir
HS, Palmblad K, Aveberger AC, Andersson U and Harris HE: High
mobility group box protein 1 in complex with lipopolysaccharide or
IL-1 promotes an increased inflammatory phenotype in synovial
fibroblasts. Arthritis Res Ther. 13:R1362011. View Article : Google Scholar : PubMed/NCBI
|
41
|
He ZW, Qin YH, Wang ZW, Chen Y, Shen Q and
Dai SM: HMGB1 acts in synergy with lipopolysaccharide in activating
rheumatoid synovial fibroblasts via p38 MAPK and NF-κB signaling
pathways. Mediators Inflamm. 2013:5967162013. View Article : Google Scholar : PubMed/NCBI
|