Carnosine and bone (Review)
- Authors:
- Hao Yang
- Xiaoli Hou
- Lei Xing
- Faming Tian
-
Affiliations: Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China - Published online on: November 17, 2022 https://doi.org/10.3892/mmr.2022.12899
- Article Number: 12
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Brown C: Osteoporosis: Staying strong. Nature. 550:S15–S17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Choi JY: Healthy bone tissue homeostasis. Exp Mol Med. 52:11652020. View Article : Google Scholar : PubMed/NCBI | |
Babizhayev MA and Deyev AI: Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther. 19:e25–e47. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zheng W, Zhao D, Sun L, Zhou B, Liu J, Wang O, Jiang Y, Xia W, Xing X and Li M: Health-related quality of life in men with osteoporosis: A systematic review and meta-analysis. Endocrine. 74:270–280. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boldyrev AA, Aldini G and Derave W: Physiology and pathophysiology of carnosine. Physiol Rev. 93:1803–1845. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maeno M, Ito-Kato E, Suzuki N, Takada T, Takayama T, Ito K and Otsuka K: Effect of beta-alanyl-L-histidinato zinc on the differentiation pathway of human periodontal ligament cells. Life Sci. 74:2493–2504. 2004. View Article : Google Scholar : PubMed/NCBI | |
Igarashi A and Yamaguchi M: Great increase in bone 66 kDa protein and osteocalcin at later stages with healing rat fractures: effect of zinc treatment. Int J Mol Med. 11:223–228. 2003.PubMed/NCBI | |
Busa P, Lee SO, Huang N, Kuthati Y and Wong CS: Carnosine alleviates knee osteoarthritis and promotes synoviocyte protection via activating the Nrf2/HO-1 signaling pathway: An in-vivo and in-vitro study. Antioxidants (Basel). 11:12092022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Yang K, Gao S, Zhao J, Liu G, Chen Y, Lin H, Zhao W, Hu Z and Xu N: Carnosine stimulates macrophage-mediated clearance of senescent skin cells through activation of the AKT2 signaling pathway by CD36 and RAGE. Front Pharmacol. 11:5938322020. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Zhong YF, Wu YP, Luo Z, Sun YM, Wang GE, Kurihara H, Li YF and He RR: Carnosine attenuates cyclophosphamide-induced bone marrow suppression by reducing oxidative DNA damage. Redox Biol. 14:1–6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M: Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 338:241–254. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Ozaki K: Beta-alanyl-L-histidinato zinc prevents the toxic effect of aluminium on bone metabolism in weanling rats. Pharmacology. 41:338–344. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Kishi S: Effect of zinc-chelating dipeptide on bone metabolism in weanling rats: Comparison with beta-alanyl-L-histidinato zinc-related compounds. Peptides. 15:671–673. 1994. View Article : Google Scholar : PubMed/NCBI | |
Udechukwu MC, Collins SA and Udenigwe CC: Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 7:4137–4144. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Connor JP, Kanjilal D, Teitelbaum M, Lin SS and Cottrell JA: Zinc as a therapeutic agent in bone regeneration. Materials (Basel). 13:22112020. View Article : Google Scholar : PubMed/NCBI | |
Ooi TC, Chan KM and Sharif R: Zinc L-carnosine suppresses inflammatory responses in lipopolysaccharide-induced RAW 264.7 murine macrophages cell line via activation of Nrf2/HO-1 signaling pathway. Immunopharmacol Immunotoxicol. 39:259–267. 2017. View Article : Google Scholar : PubMed/NCBI | |
Caruso G, Fresta CG, Martinez-Becerra F, Antonio L, Johnson RT, de Campos RPS, Siegel JM, Wijesinghe MB, Lazzarino G and Lunte SM: Carnosine modulates nitric oxide in stimulated murine RAW 264.7 macrophages. Mol Cell Biochem. 431:197–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi Q, Abusarah J, Zaouter C, Moldovan F, Fernandes JC, Fahmi H and Benderdour M: New evidence implicating 4-hydroxynonenal in the pathogenesis of osteoarthritis in vivo. Arthritis Rheumatol. 66:2461–2471. 2014. View Article : Google Scholar : PubMed/NCBI | |
Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, et al: Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation. 18:2552021. View Article : Google Scholar : PubMed/NCBI | |
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I and Przybyłowska M: Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol. 33:1561–1578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Li X, Zhi X, Cong W, Huang B, Chen H, Wang Y, Li Y, Wang L, Fang C, et al: RANKL from bone marrow adipose lineage cells promotes osteoclast formation and bone loss. EMBO Rep. 22:e524812021. View Article : Google Scholar : PubMed/NCBI | |
Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, et al: Carnosine, small but mighty-prospect of use as functional ingredient for functional food formulation. Antioxidants (Basel). 10:10372021. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Wang C, Zhang R, Xu M, Liu B, Wei D, Wang G and Tian S: Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury. J Gen Virol. 96:2939–2950. 2015. View Article : Google Scholar : PubMed/NCBI | |
Caruso G: Unveiling the hidden therapeutic potential of carnosine, a molecule with a multimodal mechanism of action: A position paper. Molecules. 27:33032022. View Article : Google Scholar : PubMed/NCBI | |
Seo HJ, Cho YE, Kim T, Shin HI and Kwun IS: Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells. Nutr Res Pract. 4:356–361. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hashizume M and Yamaguchi M: Effect of beta-alanyl-L-histidinato zinc on differentiation of osteoblastic MC3T3-E1 cells: Increases in alkaline phosphatase activity and protein concentration. Mol Cell Biochem. 131:19–24. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Hashizume M: Effect of parathyroid hormone and interleukin-1 alpha in osteoblastic MC3T3-E1 cells: Interaction with beta-alanyl-L-histidinato zinc. Peptides. 15:633–636. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M: beta-Alanyl-L-histidinato zinc and bone resorption. Gen Pharmacol. 26:1179–1183. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang Y, Kong Y, Zhang X, Zhang H, Gang Y and Bai L: Carnosine prevents type 2 diabetes-induced osteoarthritis through the ROS/NF-κB pathway. Front Pharmacol. 9:5982018. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M, Goto M, Uchiyama S and Nakagawa T: Effect of zinc on gene expression in osteoblastic MC3T3-E1 cells: Enhancement of Runx2, OPG, and regucalcin mRNA expressions. Mol Cell Biochem. 312:157–166. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sanguineti R, Puddu A, Mach F, Montecucco F and Viviani GL: Advanced glycation end products play adverse proinflammatory activities in osteoporosis. Mediators Inflamm. 2014:9758722014. View Article : Google Scholar : PubMed/NCBI | |
Fresta CG, Hogard ML, Caruso G, Melo Costa EE, Lazzarino G and Lunte SM: Monitoring carnosine uptake by RAW 264.7 macrophage cells using microchip electrophoresis with fluorescence detection. Anal Methods. 9:402–408. 2017. View Article : Google Scholar : PubMed/NCBI | |
Caruso G, Benatti C, Musso N, Fresta CG, Fidilio A, Spampinato G, Brunello N, Bucolo C, Drago F, Lunte SM, et al: Carnosine protects macrophages against the toxicity of Aβ1-42 oligomers by decreasing oxidative stress. Biomedicines. 9:4772021. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Kishi S: Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biochem. 158:171–177. 1996. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Kishi S: Inhibitory effect of zinc-chelating dipeptide on parathyroid hormone-stimulated osteoclast-like cell formation in mouse marrow cultures: Involvement of calcium signaling. Peptides. 16:629–633. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Kishi S: Differential effects of transforming growth factor-beta on osteoclast-like cell formation in mouse marrow culture: Relation to the effect of zinc-chelating dipeptides. Peptides. 16:1483–1488. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kishi S and Yamaguchi M: Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol. 48:1225–1230. 1994. View Article : Google Scholar : PubMed/NCBI | |
Ko EA, Park YJ, Yoon DS, Lee KM, Kim J, Jung S, Lee JW and Park KH: Drug repositioning of polaprezinc for bone fracture healing. Commun Biol. 5:4622022. View Article : Google Scholar : PubMed/NCBI | |
Thomas S and Jaganathan BG: Signaling network regulating osteogenesis in mesenchymal stem cells. J Cell Commun Signal. 16:47–61. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY and Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 364:149–155. 2004. View Article : Google Scholar : PubMed/NCBI | |
Takada T, Suzuki N, Ito-Kato E, Noguchi Y, Ito M, Maeno M and Otsuka K: Effect of beta-alanyl-L-histidinato zinc on the differentiation of C2C12 cells. Life Sci. 76:509–520. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ito-Kato E, Suzuki N, Maeno M, Takada T, Tanabe N, Takayama T, Ito K and Otsuka K: Effect of carnosine on runt-related transcription factor-2/core binding factor alpha-1 and Sox9 expressions of human periodontal ligament cells. J Periodontal Res. 39:199–204. 2004. View Article : Google Scholar : PubMed/NCBI | |
Eastell R, O'Neill TW, Hofbauer LC, Langdahl B, Reid IR, Gold DT and Cummings SR: Postmenopausal osteoporosis. Nat Rev Dis Primers. 2:160692016. View Article : Google Scholar : PubMed/NCBI | |
Fischer V and Haffner-Luntzer M: Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Semin Cell Dev Biol. 123:14–21. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, Li C, Xie L, Crane J, Wan M, et al: PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 20:1270–1278. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lorenzo J: From the gut to bone: Connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest. 131:e1466192021. View Article : Google Scholar : PubMed/NCBI | |
Kisi S and Yamaguchi M: Stimulatory effect of beta-alanyl-L-histidinato zinc on alkaline phosphatase activity in bone tissues from elderly rats: Comparison with zinc sulfate action. Biol Pharm Bull. 17:345–347. 1994. View Article : Google Scholar : PubMed/NCBI | |
Kishi S, Segawa Y and Yamaguchi M: Histomorphological confirmation of the preventive effect of beta-alanyl-L-histidinato zinc on bone loss in ovariectomized rats. Biol Pharm Bull. 17:862–865. 1994. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Chen CY, Liu YW, Rao SS, Tan YJ, Qian YX, Xia K, Huang J, Liu XX, Hong CG, et al: Neuronal induction of bone-fat imbalance through osteocyte neuropeptide Y. Adv Sci (Weinh). 8:e21008082021. View Article : Google Scholar : PubMed/NCBI | |
Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, van Rijn L, Gaspar C, Fodde R, Janssen F, et al: cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci USA. 105:7281–7286. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagai K, Niijima A, Yamano T, Otani H, Okumra N, Tsuruoka N, Nakai M and Kiso Y: Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood). 228:1138–1145. 2003. View Article : Google Scholar : PubMed/NCBI | |
Horii Y, Shen J, Fujisaki Y, Yoshida K and Nagai K: Effects of L-carnosine on splenic sympathetic nerve activity and tumor proliferation. Neurosci Lett. 510:1–5. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nagai K, Misonou Y, Fujisaki Y, Fuyuki R and Horii Y: Topical application of L-carnosine to skeletal muscle excites the sympathetic nerve innervating the contralateral skeletal muscle in rats. Amino Acids. 51:39–48. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cararo JH, Streck EL, Schuck PF and Ferreira Gda C: Carnosine and related peptides: Therapeutic potential in age-related disorders. Aging Dis. 6:369–379. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koide M, Yamashita T, Murakami K, Uehara S, Nakamura K, Nakamura M, Matsushita M, Ara T, Yasuda H, Penninger JM, et al: Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep. 10:137512020. View Article : Google Scholar : PubMed/NCBI | |
Manolagas SC and Almeida M: Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol. 21:2605–2614. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tallon MJ, Harris RC, Maffulli N and Tarnopolsky MA: Carnosine, taurine and enzyme activities of human skeletal muscle fibres from elderly subjects with osteoarthritis and young moderately active subjects. Biogerontology. 8:129–137. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Ozaki K: Effect of the new zinc compound beta-alanyl-L-histidinato zinc on bone metabolism in elderly rats. Pharmacology. 41:345–349. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi M and Ehara Y: Zinc decrease and bone metabolism in the femoral-metaphyseal tissues of rats with skeletal unloading. Calcif Tissue Int. 57:218–223. 1995. View Article : Google Scholar : PubMed/NCBI | |
Uddin SMZ and Qin YX: Dynamic acoustic radiation force retains bone structural and mechanical integrity in a functional disuse osteopenia model. Bone. 75:8–17. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deal C: Bone loss in rheumatoid arthritis: Systemic, periarticular, and focal. Curr Rheumatol Rep. 14:231–237. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boudignon BM, Bikle DD, Kurimoto P, Elalieh H, Nishida S, Wang Y, Burghardt A, Majumdar S, Orwoll BE, Rosen C and Halloran BP: Insulin-like growth factor I stimulates recovery of bone lost after a period of skeletal unloading. J Appl Physiol (1985). 103:125–131. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chotiyarnwong P and McCloskey EV: Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 16:437–447. 2020. View Article : Google Scholar : PubMed/NCBI | |
Segawa Y, Tsuzuike N, Itokazu Y, Tagashira E and Yamaguchi M: beta-Alanyl-L-histidinato zinc prevents hydrocortisone-induced disorder of bone metabolism in rats. Res Exp Med (Berl). 192:317–322. 1992. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Li Y, Khabut A, Chubinskaya S, Grodzinsky AJ and Önnerfjord P: Quantitative proteomics analysis of cartilage response to mechanical injury and cytokine treatment. Matrix Biol. 63:11–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Holmdahl R, Sareila O, Olsson LM, Backdahl L and Wing K: Ncf1 polymorphism reveals oxidative regulation of autoimmune chronic inflammation. Immunol Rev. 269:228–247. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sugiyama T, Tanaka H and Kawai S: Improvement of periarticular osteoporosis in postmenopausal women with rheumatoid arthritis by beta-alanyl-L-histidinato zinc: A pilot study. J Bone Miner Metab. 18:335–338. 2000. View Article : Google Scholar : PubMed/NCBI | |
Atkins GJ, Anderson PH, Findlay DM, Welldon KJ, Vincent C, Zannettino ACW, O'Loughlin PD and Morris HA: Metabolism of vitamin D3 in human osteoblasts: Evidence for autocrine and paracrine activities of 1 alpha,25-dihydroxyvitamin D3. Bone. 40:1517–1528. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kato H, Ochiai-Shino H, Onodera S, Saito A, Shibahara T and Azuma T: Promoting effect of 1,25(OH)2 vitamin D3 in osteogenic differentiation from induced pluripotent stem cells to osteocyte-like cells. Open Biol. 5:1402012015. View Article : Google Scholar : PubMed/NCBI | |
Segawa Y, Tsuzuike N, Tagashira E and Yamaguchi M: Preventive effect of beta-alanyl-L-histidinato zinc on bone metabolism in rats fed on low-calcium and vitamin D-deficient diets. Res Exp Med (Berl). 192:213–219. 1992. View Article : Google Scholar : PubMed/NCBI | |
Majidinia M, Sadeghpour A and Yousefi B: The roles of signaling pathways in bone repair and regeneration. J Cell Physiol. 233:2937–2948. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, Mylvaganam S, Grynpas M and Alman BA: Macrophages promote osteoblastic differentiation in-vivo: Implications in fracture repair and bone homeostasis. J Bone Miner Res. 30:1090–1102. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sandberg OH, Tätting L, Bernhardsson ME and Aspenberg P: Temporal role of macrophages in cancellous bone healing. Bone. 101:129–133. 2017. View Article : Google Scholar : PubMed/NCBI | |
Igarashi A and Yamaguchi M: Characterization of the increase in bone 66 kDa protein component with healing rat fractures: Stimulatory effect of zinc. Int J Mol Med. 9:503–508. 2002.PubMed/NCBI | |
Igarashi A and Yamaguchi M: Increase in bone protein components with healing rat fractures: Enhancement by zinc treatment. Int J Mol Med. 4:615–620. 1999.PubMed/NCBI | |
Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, Crane J, Frassica F, Zhang L, Rodriguez JP, et al: Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 18:1095–1101. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hughes MS, Kazmier P, Burd TA, Anglen J, Stoker AM, Kuroki K, Carson WL and Cook JL: Enhanced fracture and soft-tissue healing by means of anabolic dietary supplementation. J Bone Joint Surg Am. 88:2386–2394. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ponist S, Drafi F, Kuncirova V, Mihalova D, Rackova L, Danisovic L, Ondrejickova O, Tumova I, Trunova O, Fedorova T and Bauerova K: Effect of carnosine in experimental arthritis and on primary culture chondrocytes. Oxid Med Cell Longev. 2016:84705892016. View Article : Google Scholar : PubMed/NCBI | |
Lanza V, Greco V, Bocchieri E, Sciuto S, Inturri R, Messina L, Vaccaro S, Bellia F and Rizzarelli E: Synergistic effect of L-carnosine and hyaluronic acid in their covalent conjugates on the antioxidant abilities and the mutual defense against enzymatic degradation. Antioxidants (Basel). 11:6642022. View Article : Google Scholar : PubMed/NCBI | |
Hipkiss AR and Gaunitz F: Inhibition of tumour cell growth by carnosine: Some possible mechanisms. Amino Acids. 46:327–337. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ritter J and Bielack SS: Osteosarcoma. Ann Oncol. 21 (Suppl 7):vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ooi TC, Chan KM and Sharif R: Antioxidant, anti-inflammatory, and genomic stability enhancement effects of zinc l-carnosine: A potential cancer chemopreventive agent? Nutr Cancer. 69:201–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Wang Q, Li J and Miao D: P27 deletion enhances hematopoiesis by paracrine action of IL22 secreted from bone marrow mesenchymal stem cells. Am J Transl Res. 12:787–799. 2020.PubMed/NCBI | |
Wang JP, Yang ZT, Liu C, He YH and Zhao SS: L-carnosine inhibits neuronal cell apoptosis through signal transducer and activator of transcription 3 signaling pathway after acute focal cerebral ischemia. Brain Res. 1507:125–133. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gao K, Zhang Y, Niu J, Nie Z, Liu Q and Lv C: Zinc promotes cell apoptosis via activating the Wnt-3a/β-catenin signaling pathway in osteosarcoma. J Orthop Surg Res. 15:572020. View Article : Google Scholar : PubMed/NCBI | |
Hwang B, Shin SS, Song JH, Choi YH, Kim WJ and Moon SK: Carnosine exerts antitumor activity against bladder cancers in vitro and in vivo via suppression of angiogenesis. J Nutr Biochem. 74:1082302019. View Article : Google Scholar : PubMed/NCBI | |
Hsieh SL, Hsieh S, Lai PY, Wang JJ, Li CC and Wu CC: Carnosine suppresses human colorectal cell migration and intravasation by regulating EMT and MMP expression. Am J Chin Med. 47:477–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iovine B, Guardia F, Irace C and Bevilacqua MA: l-Carnosine dipeptide overcomes acquired resistance to 5-fluorouracil in HT29 human colon cancer cells via downregulation of HIF1-alpha and induction of apoptosis. Biochimie. 127:196–204. 2016. View Article : Google Scholar : PubMed/NCBI |