1
|
Taub R: Liver regeneration: From myth to
mechanism. Nat Rev Mol Cell Biol. 5:836–847. 2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Fausto N: Liver regeneration. J Hepatol.
32 (1 Suppl):S19–S31. 2000. View Article : Google Scholar
|
3
|
Mitchell C and Willenbring H: A
reproducible and well-tolerated method for 2/3 partial hepatectomy
in mice. Nat Protoc. 3:1167–1170. 2008. View Article : Google Scholar : PubMed/NCBI
|
4
|
Seki E, Tsutsui H, Iimuro Y, Naka T, Son
G, Akira S, Kishimoto T, Nakanishi K and Fujimoto J: Contribution
of Toll-like receptor/myeloid differentiation factor 88 signaling
to murine liver regeneration. Hepatology. 41:443–450. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen Y and Sun R: Toll-like receptors in
acute liver injury and regeneration. Int Immunopharmacol.
11:1433–1441. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Cornell RP, Liljequist BL and Bartizal KF:
Depressed liver regeneration after partial hepatectomy of
germ-free, athymic and lipopolysaccharide-resistant mice.
Hepatology. 11:916–922. 1990. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wolf JH, Bhatti TR, Fouraschen S,
Chakravorty S, Wang L, Kurian S, Salomon D, Olthoff KM, Hancock WW
and Levine MH: Heat shock protein 70 is required for optimal liver
regeneration after partial hepatectomy in mice. Liver Transpl.
20:376–385. 2014. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Hoshi M, Matsumoto K, Ito H, Ohtaki H,
Arioka Y, Osawa Y, Yamamoto Y, Matsunami H, Hara A, Seishima M and
Saito K: L-tryptophan-kynurenine pathway metabolites regulate type
I IFNs of acute viral myocarditis in mice. J Immunol.
188:3980–3987. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ito H, Hoshi M, Ohtaki H, Taguchi A, Ando
K, Ishikawa T, Osawa Y, Hara A, Moriwaki H, Saito K and Seishima M:
Ability of IDO to attenuate liver injury in
alpha-galactosylceramide-induced hepatitis model. J Immunol.
185:4554–4560. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bessede A, Gargaro M, Pallotta MT, Matino
D, Servillo G, Brunacci C, Bicciato S, Mazza EM, Macchiarulo A,
Vacca C, et al: Aryl hydrocarbon receptor control of a disease
tolerance defence pathway. Nature. 511:184–190. 2014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Takenaka MC, Gabriely G, Rothhammer V,
Mascanfroni ID, Wheeler MA, Chao CC, Gutiérrez-Vázquez C, Kenison
J, Tjon EC, Barroso A, et al: Control of tumor-associated
macrophages and T cells in glioblastoma via AHR and CD39. Nat
Neurosci. 22:729–740. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ogiso H, Ito H, Kanbe A, Ando T, Hara A,
Shimizu M, Moriwaki H and Seishima M: The inhibition of indoleamine
2,3-dioxygenase accelerates early liver regeneration in mice after
partial hepatectomy. Dig Dis Sci. 62:2386–2396. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Prendergast GC, Metz R, Muller AJ, Merlo
LMF and Mandik-Nayak L: IDO2 in immunomodulation and autoimmune
disease. Front Immunol. 5:5852014. View Article : Google Scholar : PubMed/NCBI
|
14
|
Fujii K, Yamamoto Y, Mizutani Y, Saito K
and Seishima M: Indoleamine 2,3-dioxygenase 2 deficiency
exacerbates imiquimod-induced psoriasis-like skin inflammation. Int
J Mol Sci. 21:55152020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yamamoto Y, Yamasuge W, Imai S, Kunisawa
K, Hoshi M, Fujigaki H, Mouri A, Nabeshima T and Saito K:
Lipopolysaccharide shock reveals the immune function of indoleamine
2,3-dioxygenase 2 through the regulation of IL-6/stat3 signalling.
Sci Rep. 8:159172018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Hoshi M, Osawa Y, Nakamoto K, Morita N,
Yamamoto Y, Ando T, Tashita C, Nabeshima T and Saito K: Kynurenine
produced by indoleamine 2,3-dioxygenase 2 exacerbates acute liver
injury by carbon tetrachloride in mice. Toxicology. 438:1524582020.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Ito H, Ando K, Nakayama T, Taniguchi M,
Ezaki T, Saito K, Takemura M, Sekikawa K, Imawari M, Seishima M and
Moriwaki H: Role of Valpha 14 NKT cells in the development of
impaired liver regeneration In vivo. Hepatology. 38:1116–1124.
2003. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ando T, Ito H, Kanbe A, Hara A and
Seishima M: Deficiency of NALP3 signaling impairs liver
regeneration after partial hepatectomy. Inflammation. 40:1717–1725.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Percie du Sert N, Hurst V, Ahluwalia A,
Alam S, Avey MT, Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl
U, et al: The ARRIVE guidelines 2.0: Updated guidelines for
reporting animal research. PLoS Biol. 18:e30004102020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Vogel CFA and Matsumura F: A new
cross-talk between the aryl hydrocarbon receptor and RelB, a member
of the NF-kappaB family. Biochem Pharmacol. 77:734–745. 2009.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gutiérrez-Vázquez C and Quintana FJ:
Regulation of the immune response by the Aryl hydrocarbon receptor.
Immunity. 48:19–33. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Fallarino F, Grohmann U and Puccetti P:
Indoleamine 2,3-dioxygenase: From catalyst to signaling function.
Eur J Immunol. 42:1932–1937. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Merlo LMF, Peng W, DuHadaway JB,
Montgomery JD, Prendergast GC, Muller AJ and Mandik-Nayak L: The
immunomodulatory enzyme IDO2 mediates autoimmune arthritis through
a nonenzymatic mechanism. J Immunol. 208:571–581. 2022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Luo MC, Zhou SY, Feng DY, Xiao J, Li WY,
Xu CD, Wang HY and Zhou T: Runt-related transcription factor 1
(RUNX1) binds to p50 in macrophages and enhances TLR4-triggered
inflammation and septic shock. J Biol Chem. 291:22011–22020. 2016.
View Article : Google Scholar : PubMed/NCBI
|