1
|
Murphy D, McCulloch CE, Lin F, Banerjee T,
Bragg-Gresham JL, Eberhardt MS, Morgenstern H, Pavkov ME, Saran R,
Powe NR, et al: Trends in prevalence of chronic kidney disease in
the United States. Ann Intern Med. 165:473–481. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Coresh J, Selvin E, Stevens LA, Manzi J,
Kusek JW, Eggers P, Van Lente F and Levey AS: Prevalence of chronic
kidney disease in the United States. Jama. 298:2038–2047. 2007.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Barrera-Chimal J and Jaisser F:
Pathophysiologic mechanisms in diabetic kidney disease: A focus on
current and future therapeutic targets. Diabetes Obes Metab. 22
(Suppl 1):S16–S31. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jin D, Zhang Y, Zhang Y, Duan L, Zhou R,
Duan Y, Sun Y, Lian F and Tong X: Panax Ginseng C.A.Mey. as
Medicine: The potential use of panax ginseng C.A.Mey. as a remedy
for kidney protection from a pharmacological perspective. Front
Pharmacol. 12:7341512021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Thomas MC, Brownlee M, Susztak K, Sharma
K, Jandeleit-Dahm KAM, Zoungas S, Rossing P, Groop PH and Cooper
ME: Diabetic kidney disease. Nat Rev Dis Primers. 1:150182015.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Barroso I, Gurnell M, Crowley VE, Agostini
M, Schwabe JW, Soos MA, Maslen GL, Williams TD, Lewis H, Schafer
AJ, et al: Dominant negative mutations in human PPARgamma
associated with severe insulin resistance, diabetes mellitus and
hypertension. Nature. 402:880–883. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kökény G, Calvier L and Hansmann G: PPARγ
and TGFβ-major regulators of metabolism, inflammation, and fibrosis
in the lungs and kidneys. Int J Mol Sci. 22:104312021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Li YQ, Jin M and Qiu SL: Effect of Chinese
herbal medicine for benefiting qi and nourishing yin to promote
blood circulation on ventricular wall motion of AMI patients after
revascularization. Zhongguo Zhong Xi Yi Jie He Za Zhi. 29:300–304.
2009.(In Chinese). PubMed/NCBI
|
9
|
Du JP, Wang CL, Wang PL, Wang SL, Gao ZY,
Zhang DW, Xu H and Shi DZ: Efficacy of Chinese herbs for
supplementing qi and activating blood circulation on patients with
acute coronary syndrome and type 2 diabetes mellitus after
percutaneous coronary intervention: A clinical observation.
Zhongguo Zhong Xi Yi Jie He Za Zhi. 35:563–567. 2015.(In Chinese).
PubMed/NCBI
|
10
|
Qiao Y, Zhang J, Liu Y, Liang Z, Wang Y,
Zheng W and Shi D: Efficacy and safety of zhenyuan capsule for
coronary heart disease with abnormal glucose and lipid metabolism:
Study protocol for a randomized, double-blind, parallel-controlled,
multicenter clinical trial. Evid Based Complement Alternative Med.
2018:17164302018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang JY, Sun Y, Fan QX and Zhang YQ:
Efficacy of Shenyi Capsule combined with gemcitabine plus cisplatin
in treatment of advanced esophageal cancer: A randomized controlled
trial. Zhong Xi Yi Jie He Xue Bao. 7:1047–1051. 2009.(In Chinese).
View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhang RR, Shao MY, Fu Y, Zhao RX, Wang JW,
Li M, Zhao YX and Shao FL: Network Meta-analysis of oral Chinese
patent medicine for adjuvant treatment of primary liver cancer.
Zhongguo Zhong Yao Za Zhi. 46:2333–2343. 2021.PubMed/NCBI
|
13
|
Vo HT, Cho JY, Choi YE, Choi YS and Jeong
YH: Kinetic study for the optimization of ginsenoside Rg3
production by heat treatment of ginsenoside Rb1. J Ginseng Res.
39:304–313. 2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cheng LQ, Na JR, Bang MH, Kim MK and Yang
DC: Conversion of major ginsenoside Rb1 to 20 (S)-ginsenoside Rg3
by Microbacterium sp. GS514. Phytochemistry. 69:218–224. 2008.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Quan LH, Min JW, Yang DU, Kim YJ and Yang
DC: Enzymatic biotransformation of ginsenoside Rb1 to 20 (S)-Rg3 by
recombinant β-glucosidase from Microbacterium esteraromaticum. Appl
Microbiol Biotechnol. 94:377–384. 2012. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mohanan P, Subramaniyam S, Mathiyalagan R
and Yang DC: Molecular signaling of ginsenosides Rb1, Rg1, and Rg3
and their mode of actions. J Ginseng Res. 42:123–132. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Jeong D, Irfan M, Kim SD, Kim S, Oh JH,
Park CK, Kim HK and Rhee MH: Ginsenoside Rg3-enriched red ginseng
extract inhibits platelet activation and in vivo thrombus
formation. J Ginseng Res. 41:548–555. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sun M, Ye Y, Xiao L, Duan X, Zhang Y and
Zhang H: Anticancer effects of ginsenoside Rg3 (Review). Int J Mol
Med. 39:507–518. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Nakhjavani M, Smith E, Townsend AR, Price
TJ and Hardingham JE: Anti-angiogenic properties of ginsenoside
Rg3. Molecules. 25:49052020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Liu Z, Liu T, Li W, Li J, Wang C and Zhang
K: Insights into the antitumor mechanism of ginsenosides Rg3. Mol
Biol Rep. 48:2639–2652. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Jiang Y, Li M, Lu Z, Wang Y, Yu X, Sui D
and Fu L: Ginsenoside Rg3 induces ginsenoside Rb1-comparable
cardioprotective effects independent of reducing blood pressure in
spontaneously hypertensive rats. Exp Ther Med. 14:4977–4985.
2017.PubMed/NCBI
|
22
|
Jiang Y, Sui D, Yu X, Wang Y, Xu H and Fu
L: Ginsenoside Rg3 attenuates early hepatic injury via inhibiting
PPARγ- and Ang II-related inflammation and fibrosis in type II
diabetic mice. Natural Product Commun. 16:1934578X2110096912021.
View Article : Google Scholar
|
23
|
Liu H, Jiang Y, Li M, Yu X, Sui D and Fu
L: Ginsenoside Rg3 attenuates angiotensin II-mediated renal injury
in rats and mice by upregulating angiotensin-converting enzyme 2 in
the renal tissue. Evid Based Complement Alternat Med.
2019:67410572019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jiang Y, Sui D, Li M, Xu H, Yu X, Liu J
and Yu Q: Ginsenoside re improves inflammation and fibrosis in
hepatic tissue by upregulating PPARγ expression and inhibiting
oxidative stress in db/db mice. Evid Based Complement Alternat Med.
2021:90036032021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Xie W, Zhou P, Qu M, Dai Z, Zhang X, Zhang
C, Dong X, Sun G and Sun X: Ginsenoside re attenuates high
glucose-induced RF/6A injury via regulating PI3K/AKT inhibited
HIF-1α/VEGF signaling pathway. Front Pharmacol. 11:6952020.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu YW, Zhu X, Li W, Lu Q, Wang JY, Wei YQ
and Yin XX: Ginsenoside Re attenuates diabetes-associated cognitive
deficits in rats. Pharmacol Biochem Behav. 101:93–98. 2012.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lin SS, Liu CX, Zhang JH, Wang XL and Mao
JY: Efficacy and safety of oral chinese patent medicine combined
with conventional therapy for heart failure: An overview of
systematic reviews. Evid Based Complement Alternat Med.
2020:86201862020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Yan D, Xu XR, Qian YL, Peng HY, Qian H,
Yue BW, Zhao LL, Zhang ZH and Fang ZY: Chinese Patent medicine to
treat a 32-year-old man with sinus bradycardia and cardiac sinus
arrests: A case report. Medicine (Baltimore). 98:e155362019.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Geng J, Fu W, Yu X, Lu Z, Liu Y, Sun M, Yu
P, Li X, Fu L, Xu H and Sui D: Ginsenoside Rg3 alleviates ox-LDL
induced endothelial dysfunction and prevents atherosclerosis in
ApoE (−/-) mice by regulating PPARγ/FAK signaling pathway. Front
Pharmacol. 11:5002020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Fu W, Xue Y, Lu Z, Li Y, Yu P, Yu
X, Xu H and Sui D: Ginsenoside rc ameliorates endothelial insulin
resistance via upregulation of angiotensin-converting enzyme 2.
Front Pharmacol. 12:6205242021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Sharma K, McCue P and Dunn SR: Diabetic
kidney disease in the db/db mouse. Am J Physiol Renal Physiol.
284:F1138–F1144. 2003. View Article : Google Scholar : PubMed/NCBI
|
32
|
Tesch GH and Lim AK: Recent insights into
diabetic renal injury from the db/db mouse model of type 2 diabetic
nephropathy. Am J Physiol Renal Physiol. 300:F301–F310. 2011.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2 (−Delta Delta C (T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Sun Y, Jia Z, Liu G, Zhou L, Liu M, Yang B
and Yang T: PPARγ agonist rosiglitazone suppresses renal
mPGES-1/PGE2 pathway in db/db Mice. PPAR Res. 2013:6129712013.
View Article : Google Scholar : PubMed/NCBI
|
35
|
St Peter WL, Odum LE and Whaley-Connell
AT: To RAS or not to RAS? The evidence for and cautions with
renin-angiotensin system inhibition in patients with diabetic
kidney disease. Pharmacotherapy. 33:496–514. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Malek V, Suryavanshi SV, Sharma N,
Kulkarni YA, Mulay SR and Gaikwad AB: Potential of
renin-angiotensin-aldosterone system modulations in diabetic kidney
disease: Old players to new hope! Rev Physiol Biochem Pharmacol.
179:31–71. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Soccio RE, Chen ER and Lazar MA:
Thiazolidinediones and the promise of insulin sensitization in type
2 diabetes. Cell Metab. 20:573–591. 2014. View Article : Google Scholar : PubMed/NCBI
|
38
|
Rizos CV, Kei A and Elisaf MS: The current
role of thiazolidinediones in diabetes management. Arch Toxicol.
90:1861–1881. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ri-Na SA and Bing Z: Pharmacovigilance of
traditional Chinese medicine according to theory of preventive
treatment of disease. Zhongguo Zhong Yao Za Zhi. 45:4273–4276.
2020.(In Chinese). PubMed/NCBI
|
40
|
Zhao JN, Hua H, Yang AD, Zhang YG, Dai Y,
Li QM, Yan LC, Li XL, Li L, Zeng J, et al: Generalized science of
Chinese material medica-from preventive treatment of disease to
Chinese medicine health industry. Zhongguo Zhong Yao Za Zhi.
43:4177–4181. 2018.(In Chinese). PubMed/NCBI
|
41
|
Yang Y, Wang H, Zhang M, Shi M, Yang C, Ni
Q, Wang Q, Li J, Wang X, Zhang C and Li Z: Safety and antifatigue
effect of Korean Red Ginseng capsule: A randomized, double-blind
and placebo-controlled clinical trial. J Ginseng Res. 46:543–549.
2022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wan Y, Wang J, Xu JF, Tang F, Chen L, Tan
YZ, Rao CL, Ao H and Peng C: Panax ginseng and its ginsenosides:
Potential candidates for the prevention and treatment of
chemotherapy-induced side effects. J Ginseng Res. 45:617–630. 2021.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Yuan HD, Quan HY, Zhang Y, Kim SH and
Chung SH: 20 (S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon
cancer cells is associated with AMPK signaling pathway. Mol Med
Rep. 3:825–831. 2010.PubMed/NCBI
|
44
|
Jiang JW, Chen XM, Chen XH and Zheng SS:
Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via
intrinsic apoptotic pathway. World J Gastroenterol. 17:3605–3613.
2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhang C, Liu L, Yu Y, Chen B, Tang C and
Li X: Antitumor effects of ginsenoside Rg3 on human hepatocellular
carcinoma cells. Mol Med Rep. 5:1295–1298. 2012.PubMed/NCBI
|
46
|
Meng ZQ, Zhang R, Wu XW, Jin TF and Zhang
MH: Ginsenoside Rg3 Regulates cisplatin resistance in gastric
cancer by Wnt/β-catenin signaling pathway. Zhongguo Yi Xue Ke Xue
Yuan Xue Bao. 44:366–376. 2022.(In Chinese). PubMed/NCBI
|
47
|
Mao X, Jin Y, Feng T, Wang H, Liu D, Zhou
Z, Yan Q, Yang H, Yang J, Yang J, et al: Ginsenoside Rg3 inhibits
the growth of osteosarcoma and attenuates metastasis through the
Wnt/β-catenin and EMT signaling pathway. Evid Based Complement
Alternat Med. 2020:60651242020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Tan Q, Lin S, Zeng Y, Yao M, Liu K, Yuan
H, Liu C and Jiang G: Ginsenoside Rg3 attenuates the osimertinib
resistance by reducing the stemness of non-small cell lung cancer
cells. Environ Toxicol. 35:643–651. 2020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shen YW, Zhou YD, Chen HZ, Luan X and
Zhang WD: Targeting CTGF in cancer: An emerging therapeutic
opportunity. Trends Cancer. 7:511–524. 2021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lecarpentier Y, Claes V, Vallée A and
Hébert JL: Interactions between PPAR gamma and the canonical
Wnt/beta-catenin pathway in type 2 diabetes and colon cancer. PPAR
Res. 2017:58790902017. View Article : Google Scholar : PubMed/NCBI
|
51
|
El Ouarrat D, Isaac R, Lee YS, Oh DY,
Wollam J, Lackey D, Riopel M, Bandyopadhyay G, Seo JB,
Sampath-Kumar R and Olefsky JM: TAZ is a negative regulator of
PPARγ activity in adipocytes and TAZ deletion improves insulin
sensitivity and glucose tolerance. Cell Metab. 31:162–173.e165.
2020. View Article : Google Scholar : PubMed/NCBI
|
52
|
Hernandez-Quiles M, Broekema MF and
Kalkhoven E: PPARgamma in metabolism, immunity, and cancer: Unified
and diverse mechanisms of action. Front Endocrinol (Lausanne).
12:6241122021. View Article : Google Scholar : PubMed/NCBI
|