1
|
Hodgkinson T, Kelly DC, Curtin CM and
O'Brien FJ: Mechanosignalling in cartilage: An emerging target for
the treatment of osteoarthritis. Nat Rev Rheumatol. 18:67–84. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Quicke JG, Conaghan PG, Corp N and Peat G:
Osteoarthritis year in review 2021: Epidemiology & therapy.
Osteoarthritis Cartilage. 30:196–206. 2022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Klein JC, Keith A, Rice SJ, Shepherd C,
Agarwal V, Loughlin J and Shendure J: Functional testing of
thousands of osteoarthritis-associated variants for regulatory
activity. Nat Commun. 10:24342019. View Article : Google Scholar : PubMed/NCBI
|
4
|
O'Neill TW and Felson DT: Mechanisms of
osteoarthritis (OA) pain. Curr Osteoporos Rep. 16:611–616. 2018.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu Y, Ying L, Chen W, Cui ZX, Zhu Q, Liu
X, Zheng H, Liang D and Zhu Y: Accelerating the 3D T1ρ
mapping of cartilage using a signal-compensated robust tensor
principal component analysis model. Quant Imaging Med Surg.
11:3376–3391. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou J, Deng S, Fang H, Du X, Peng H and
Hu Q: Circular RNA circANKRD36 regulates Casz1 by targeting miR-599
to prevent osteoarthritis chondrocyte apoptosis and inflammation. J
Cell Mol Med. 25:120–131. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Deligiannidou GE, Papadopoulos RE,
Kontogiorgis C, Detsi A, Bezirtzoglou E and Constantinides T:
Unraveling natural products' role in osteoarthritis management-an
overview. Antioxidants (Basel). 9:3482020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kraus VB, McDaniel G, Huebner JL, Stabler
TV, Pieper CF, Shipes SW, Petry NA, Low PS, Shen J, McNearney TA
and Mitchell P: Direct in vivo evidence of activated macrophages in
human osteoarthritis. Osteoarthritis Cartilage. 24:1613–1621. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Zhou F, Mei J, Yang S, Han X, Li H, Yu Z,
Qiao H and Tang T: Modified ZIF-8 nanoparticles attenuate
osteoarthritis by reprogramming the metabolic pathway of synovial
macrophages. ACS Appl Mater Interfaces. 12:2009–2022. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Omran Z: New disulfiram derivatives as
MAGL-selective inhibitors. Molecules. 26:32962021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Gil-Ordóñez A, Martín-Fontecha M,
Ortega-Gutiérrez S and López-Rodríguez ML: Monoacylglycerol lipase
(MAGL) as a promising therapeutic target. Biochem Pharmacol.
157:18–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jha V, Biagi M, Spinelli V, Di Stefano M,
Macchia M, Minutolo F, Granchi C, Poli G and Tuccinardi T:
Discovery of monoacylglycerol lipase (MAGL) inhibitors based on a
pharmacophore-guided virtual screening study. Molecules. 26:782020.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Sun J, Zhou YQ, Chen SP, Wang XM, Xu BY,
Li DY, Tian YK and Ye DW: The endocannabinoid system: Novel targets
for treating cancer induced bone pain. Biomed Pharmacother.
120:1095042019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wiskerke J, Irimia C, Cravatt BF, De Vries
TJ, Schoffelmeer ANM, Pattij T and Parsons LH: Characterization of
the effects of reuptake and hydrolysis inhibition on interstitial
endocannabinoid levels in the brain: An in vivo microdialysis
study. ACS Chem Neurosci. 3:407–417. 2012. View Article : Google Scholar : PubMed/NCBI
|
15
|
Philpott HT and McDougall JJ: Combatting
joint pain and inflammation by dual inhibition of monoacylglycerol
lipase and cyclooxygenase-2 in a rat model of osteoarthritis.
Arthritis Res Ther. 22:92020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chen Q, Lei JH, Bao J, Wang H, Hao W, Li
L, Peng C, Masuda T, Miao K, Xu J, et al: BRCA1 Deficiency: BRCA1
deficiency impairs mitophagy and promotes inflammasome activation
and mammary tumor metastasis (Adv. Sci. 6/2020). Adv Sci (Weinh).
7:20700332020. View Article : Google Scholar
|
17
|
Duan R, Xie H and Liu ZZ: The role of
autophagy in osteoarthritis. Front Cell Dev Biol. 8:6083882020.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Shao S, Xu CB, Chen CJ, Shi GN, Guo QL,
Zhou Y, Wei YZ, Wu L, Shi JG and Zhang TT: Divanillyl sulfone
suppresses NLRP3 inflammasome activation via inducing mitophagy to
ameliorate chronic neuropathic pain in mice. J Neuroinflammation.
18:1422021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yi MH, Shin J, Shin N, Yin Y, Lee SY, Kim
CS, Kim SR, Zhang E and Kim DW: PINK1 mediates spinal cord
mitophagy in neuropathic pain. J Pain Res. 12:1685–1699. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin J, Zhuge J, Zheng X, Wu Y, Zhang Z, Xu
T, Meftah Z, Xu H, Wu Y, Tian N, et al: Urolithin A-induced
mitophagy suppresses apoptosis and attenuates intervertebral disc
degeneration via the AMPK signaling pathway. Free Radic Biol Med.
150:109–119. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Patoli D, Mignotte F, Deckert V, Dusuel A,
Dumont A, Rieu A, Jalil A, Van Dongen K, Bourgeois T, Gautier T, et
al: Inhibition of mitophagy drives macrophage activation and
antibacterial defense during sepsis. J Clin Invest. 130:5858–5874.
2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Pitcher T, Sousa-Valente J and Malcangio
M: The monoiodoacetate model of osteoarthritis pain in the mouse. J
Vis Exp. 537462016.PubMed/NCBI
|
23
|
Zheng XF, Hong YX, Feng GJ, Zhang GF,
Rogers H, Lewis MA, Williams DW, Xia ZF, Song B and Wei XQ:
Lipopolysaccharide-induced M2 to M1 macrophage transformation for
IL-12p70 production is blocked by Candida albicans mediated
up-regulation of EBI3 expression. PLoS One. 8:e639672013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Liu L, Guo H, Song A, Huang J, Zhang Y,
Jin S, Li S, Zhang L, Yang C and Yang P: Progranulin inhibits
LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways.
BMC Immunol. 21:322020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yuda M, Aizawa S, Tsuboi I, Hirabayashi Y,
Harada T, Hino H and Hirai S: Imbalanced M1 and M2 macrophage
polarization in bone marrow provokes impairment of the
hematopoietic microenvironment in a mouse model of hemophagocytic
lymphohistiocytosis. Biol Pharm Bull. 45:1602–1608. 2022.
View Article : Google Scholar : PubMed/NCBI
|
26
|
He X, Xiao J, Li Z, Ye M, Lin J, Liu Z,
Liang Y, Dai H, Jing R and Lin F: Inhibition of PD-1 alters the
SHP1/2-PI3K/Akt axis to decrease M1 polarization of alveolar
macrophages in lung ischemia-reperfusion injury. Inflammation.
46:639–654. 2023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mussawy H, Zustin J, Luebke AM, Strahl A,
Krenn V, Rüther W and Rolvien T: The histopathological synovitis
score is influenced by biopsy location in patients with knee
osteoarthritis. Arch Orthop Trauma Surg. 142:2991–2997. 2022.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Chen M, Zhang Y, Wang H, Yang H, Yin W, Xu
S, Jiang T, Wang M, Wu F and Yu W: Inhibition of the norepinephrine
transporter rescues vascular hyporeactivity to catecholamine in
obstructive jaundice. Eur J Pharmacol. 900:1740552021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Nunes MA, Toricelli M, Schöwe NM, Malerba
HN, Dong-Creste KE, Farah DMAT, De Angelis K, Irigoyen MC, Gobeil
F, Araujo Viel T and Buck HS: Kinin B2 receptor activation prevents
the evolution of Alzheimer's disease pathological characteristics
in a transgenic mouse model. Pharmaceuticals (Basel). 13:2882020.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kikuchi M, Takase K, Hayakawa M, Hayakawa
H, Tominaga S and Ohmori T: Altered behavior in mice overexpressing
soluble ST2. Mol Brain. 13:742020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen H, Wu J, Wang Z, Wu Y, Wu T, Wu Y,
Wang M, Wang S, Wang X, Wang J, et al: Trends and patterns of knee
osteoarthritis in China: A longitudinal study of 17.7 million
adults from 2008 to 2017. Int J Environ Res Public Health.
18:88642021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Conaghan PG, Cook AD, Hamilton JA and Tak
PP: Therapeutic options for targeting inflammatory osteoarthritis
pain. Nat Rev Rheumatol. 15:355–363. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kasatkina LA, Rittchen S and Sturm EM:
Neuroprotective and immunomodulatory action of the endocannabinoid
system under neuroinflammation. Int J Mol Sci. 22:54312021.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Baggelaar MP, Maccarrone M and van der
Stelt M: 2-Arachidonoylglycerol: A signaling lipid with manifold
actions in the brain. Prog Lipid Res. 71:1–17. 2018. View Article : Google Scholar : PubMed/NCBI
|
35
|
Thomson A and Hilkens CMU: Synovial
macrophages in osteoarthritis: The key to understanding
pathogenesis? Front Immunol. 12:6787572021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Woodell-May JE and Sommerfeld SD: Role of
inflammation and the immune system in the progression of
osteoarthritis. J Orthop Res. 38:253–257. 2020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Griffin TM and Scanzello CR: Innate
inflammation and synovial macrophages in osteoarthritis
pathophysiology. Clin Exp Rheumatol. 37 (Suppl 120):S57–S63.
2019.
|
38
|
Chandrasekaran P, Izadjoo S, Stimely J,
Palaniyandi S, Zhu X, Tafuri W and Mosser DM: Regulatory
macrophages inhibit alternative macrophage activation and attenuate
pathology associated with fibrosis. J Immunol. 203:2130–2140. 2019.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Yoo SM and Jung YK: A molecular approach
to mitophagy and mitochondrial dynamics. Mol Cells. 41:18–26.
2018.PubMed/NCBI
|
40
|
Lou G, Palikaras K, Lautrup S,
Scheibye-Knudsen M, Tavernarakis N and Fang EF: Mitophagy and
neuroprotection. Trends Mol Med. 26:8–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pickles S, Vigié P and Youle RJ: Mitophagy
and quality control mechanisms in mitochondrial maintenance. Curr
Biol. 28:R170–R185. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S,
Liu C, Lyu FJ and Zheng Q: The role of autophagy and mitophagy in
bone metabolic disorders. Int J Biol Sci. 16:2675–2691. 2020.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Xu Y, Tang Y, Lu J and Zhang W, Zhu Y,
Zhang S, Ma G, Jiang P and Zhang W: PINK1-mediated mitophagy
protects against hepatic ischemia/reperfusion injury by restraining
NLRP3 inflammasome activation. Free Radic Biol Med. 160:871–886.
2020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yi S, Zheng B, Zhu Y, Cai Y, Sun H and
Zhou J: Melatonin ameliorates excessive PINK1/Parkin-mediated
mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS.
Am J Physiol Endocrinol Metab. 319:E91–E101. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Li R and Chen J: Salidroside protects
dopaminergic neurons by enhancing PINK1/Parkin-mediated mitophagy.
Oxid Med Cell Longev. 2019:93410182019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Miller S and Muqit MMK: Therapeutic
approaches to enhance PINK1/Parkin mediated mitophagy for the
treatment of Parkinson's disease. Neurosci Lett. 705:7–13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Matsuda N, Sato S, Shiba K, Okatsu K,
Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al:
PINK1 stabilized by mitochondrial depolarization recruits Parkin to
damaged mitochondria and activates latent Parkin for mitophagy. J
Cell Biol. 189:211–221. 2010. View Article : Google Scholar : PubMed/NCBI
|