1
|
Crimmins EM: Lifespan and healthspan:
Past, present, and promise. Gerontologist. 55:901–911. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Riggs BL and Melton LJ III: The worldwide
problem of osteoporosis: Insights afforded by epidemiology. Bone.
17 (5 Suppl):505S–511S. 1995. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cosman F, de Beur SJ, LeBoff MS, Lewiecki
EM, Tanner B, Randall S and Lindsay R; National Osteoporosis
Foundation, : Clinician's guide to prevention and treatment of
osteoporosis. Osteoporos Int. 25:2359–2381. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Matsuo K and Irie N: Osteoclast-osteoblast
communication. Arch Biochem Biophys. 473:201–209. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Feng X and McDonald JM: Disorders of bone
remodeling. Annu Rev Pathol. 6:121–145. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sözen T, Özışık L and Başaran NÇ: An
overview and management of osteoporosis. Eur J Rheumatol. 4:46–56.
2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tella SH and Gallagher JC: Prevention and
treatment of postmenopausal osteoporosis. J Steroid Biochem Mol
Biol. 142:155–170. 2014. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rasmusson L and Abtahi J: Bisphosphonate
associated osteonecrosis of the jaw: An update on pathophysiology,
risk factors, and treatment. Int J Dent. 2014:4710352014.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Abrahamsen B: Bisphosphonate adverse
effects, lessons from large databases. Curr Opin Rheumatol.
22:404–409. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Collin-Osdoby P, Yu X, Zheng H and Osdoby
P: RANKL-mediated osteoclast formation from murine RAW 264.7 cells.
Methods Mol Med. 80:153–166. 2003.PubMed/NCBI
|
11
|
Clohisy JC, Frazier E, Hirayama T and
Abu-Amer Y: RANKL is an essential cytokine mediator of
polymethylmethacrylate particle-induced osteoclastogenesis. J
Orthop Res. 21:202–212. 2003. View Article : Google Scholar : PubMed/NCBI
|
12
|
Galibert L, Tometsko ME, Anderson DM,
Cosman D and Dougall WC: The involvement of multiple tumor necrosis
factor receptor (TNFR)-associated factors in the signaling
mechanisms of receptor activator of NF-kappaB, a member of the TNFR
superfamily. J Biol Chem. 273:34120–34127. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kobayashi N, Kadono Y, Naito A, Matsumoto
K, Yamamoto T, Tanaka S and Inoue J: Segregation of TRAF6-mediated
signaling pathways clarifies its role in osteoclastogenesis. EMBO
J. 20:1271–1280. 2001. View Article : Google Scholar : PubMed/NCBI
|
14
|
Teitelbaum SL: Bone resorption by
osteoclasts. Science. 289:1504–1508. 2000. View Article : Google Scholar : PubMed/NCBI
|
15
|
Boyle WJ, Simonet WS and Lacey DL:
Osteoclast differentiation and activation. Nature. 423:337–342.
2003. View Article : Google Scholar : PubMed/NCBI
|
16
|
Takayanagi H, Kim S, Koga T, Nishina H,
Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, et al:
Induction and activation of the transcription factor NFATc1 (NFAT2)
integrate RANKL signaling in terminal differentiation of
osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kim JH and Kim N: Regulation of NFATc1 in
osteoclast differentiation. J Bone Metab. 21:233–241. 2014.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Lai P, Du JR, Zhang MX, Kuang X, Li YJ,
Chen YS and He Y: Aqueous extract of Gleditsia sinensis Lam. Fruits
improves serum and liver lipid profiles and attenuates
atherosclerosis in rabbits fed a high-fat diet. J Ethnopharmacol.
137:1061–1066. 2011. View Article : Google Scholar : PubMed/NCBI
|
19
|
Güçlü-Ustündağ O and Mazza G: Saponins:
Properties, applications and processing. Crit Rev Food Sci Nutr.
47:231–258. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen J, Li Z, Zheng KY, Guo AJ, Zhu KY,
Zhang WL, Zhan JY, Dong TT, Su Z and Tsim KW: Chemical
fingerprinting and quantitative analysis of two common Gleditsia
sinensis fruits using HPLC-DAD. Acta Pharm. 63:505–515. 2013.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Joh EH, Gu W and Kim DH: Echinocystic acid
ameliorates lung inflammation in mice and alveolar macrophages by
inhibiting the binding of LPS to TLR4 in NF-κB and MAPK pathways.
Biochem Pharmacol. 84:331–340. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hyam SR, Jang SE, Jeong JJ, Joh EH, Han MJ
and Kim DH: Echinocystic acid, a metabolite of lancemaside A,
inhibits TNBS-induced colitis in mice. Int Immunopharmacol.
15:433–441. 2013. View Article : Google Scholar : PubMed/NCBI
|
23
|
Lee W, Yang EJ, Ku SK, Song KS and Bae JS:
Anti-inflammatory effects of oleanolic acid on LPS-induced
inflammation in vitro and in vivo. Inflammation. 36:94–102. 2013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Choi JK, Oh HM, Lee S, Park JW, Khang D,
Lee SW, Lee WS, Rho MC and Kim SH: Oleanolic acid acetate inhibits
atopic dermatitis and allergic contact dermatitis in a murine
model. Toxicol Appl Pharmacol. 269:72–80. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kim JY, Cheon YH, Oh HM, Rho MC,
Erkhembaatar M, Kim MS, Lee CH, Kim JJ, Choi MK, Yoon KH, et al:
Oleanolic acid acetate inhibits osteoclast differentiation by
downregulating PLCγ2-Ca(2+)-NFATc1 signaling, and suppresses bone
loss in mice. Bone. 60:104–111. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lacativa PG and Farias ML: Osteoporosis
and inflammation. Arq Bras Endocrinol Metabol. 54:123–132. 2010.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Lee S, Kim M, Hong S, Kim EJ, Kim JH, Sohn
Y and Jung HS: Effects of sparganii rhizoma on osteoclast formation
and osteoblast differentiation and on an OVX-induced bone loss
model. Front Pharmacol. 12:7978922022. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tschöp MH, Speakman JR, Arch JR, Auwerx J,
Brüning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C,
et al: A guide to analysis of mouse energy metabolism. Nat Methods.
9:57–63. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wang Y, Huang P, Tang PF, Chan KM and Li
G: Alendronate (ALN) combined with osteoprotegerin (OPG)
significantly improves mechanical properties of long bone than the
single use of ALN or OPG in the ovariectomized rats. J Orthop Surg
Res. 6:342011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Beeton C, Garcia A and Chandy KG: Drawing
blood from rats through the saphenous vein and by cardiac puncture.
J Vis Exp. 2662007.PubMed/NCBI
|
31
|
Dietz BM, Hajirahimkhan A, Dunlap TL and
Bolton JL: Botanicals and their bioactive phytochemicals for
women's health. Pharmacol Rev. 68:1026–1073. 2016. View Article : Google Scholar : PubMed/NCBI
|
32
|
He J, Li X, Wang Z, Bennett S, Chen K,
Xiao Z, Zhan J, Chen S, Hou Y, Chen J, et al: Therapeutic anabolic
and anticatabolic benefits of natural Chinese medicines for the
treatment of osteoporosis. Front Pharmacol. 10:13442019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Słupski W, Jawień P and Nowak B:
Botanicals in postmenopausal osteoporosis. Nutrients. 13:16092021.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang T, Liu Q, Tjhioe W, Zhao J, Lu A,
Zhang G, Tan RX, Zhou M, Xu J and Feng HT: Therapeutic potential
and outlook of alternative medicine for osteoporosis. Curr Drug
Targets. 18:1051–1068. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hartley JW, Evans LH, Green KY, Naghashfar
Z, Macias AR, Zerfas PM and Ward JM: Expression of infectious
murine leukemia viruses by RAW264.7 cells, a potential complication
for studies with a widely used mouse macrophage cell line.
Retrovirology. 5:12008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Vincent C, Kogawa M, Findlay DM and Atkins
GJ: The generation of osteoclasts from RAW 264.7 precursors in
defined, serum-free conditions. J Bone Miner Metab. 27:114–119.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vesprey A and Yang W: Pit assay to measure
the bone resorptive activity of bone marrow-derived osteoclasts.
Bio Protoc. 6:e18362016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Matsubara T, Kinbara M, Maeda T, Yoshizawa
M, Kokabu S and Takano Yamamoto T: Regulation of osteoclast
differentiation and actin ring formation by the cytolinker protein
plectin. Biochem Biophys Res Commun. 489:472–476. 2017. View Article : Google Scholar : PubMed/NCBI
|
39
|
Boyce BF and Xing L: Functions of
RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem
Biophys. 473:139–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dougall WC, Glaccum M, Charrier K,
Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME,
Maliszewski CR, et al: RANK is essential for osteoclast and lymph
node development. Genes Dev. 13:2412–2424. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yamashita T, Yao Z, Li F, Zhang Q, Badell
IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, et al:
NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB
ligand (RANKL) and tumor necrosis factor-induced osteoclast
precursor differentiation by activating c-Fos and NFATc1. J Biol
Chem. 282:18245–18253. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Fujioka S, Niu J, Schmidt C, Sclabas GM,
Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL and Chiao PJ:
NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent
regulation of AP-1 activity. Mol Cell Biol. 24:7806–7819. 2004.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Asagiri M, Sato K, Usami T, Ochi S,
Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E and
Takayanagi H: Autoamplification of NFATc1 expression determines its
essential role in bone homeostasis. J Exp Med. 202:1261–1269. 2005.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Grigoriadis AE, Wang ZQ, Cecchini MG,
Hofstetter W, Felix R, Fleisch HA and Wagner EF: c-Fos: A key
regulator of osteoclast-macrophage lineage determination and bone
remodeling. Science. 266:443–448. 1994. View Article : Google Scholar : PubMed/NCBI
|
45
|
Arai A, Mizoguchi T, Harada S, Kobayashi
Y, Nakamichi Y, Yasuda H, Penninger JM, Yamada K, Udagawa N and
Takahashi N: Fos plays an essential role in the upregulation of
RANK expression in osteoclast precursors within the bone
microenvironment. J Cell Sci. 125:2910–2917. 2012.PubMed/NCBI
|
46
|
Ballanti P, Minisola S, Pacitti MT,
Scarnecchia L, Rosso R, Mazzuoli GF and Bonucci E:
Tartrate-resistant acid phosphate activity as osteoclastic marker:
Sensitivity of cytochemical assessment and serum assay in
comparison with standardized osteoclast histomorphometry.
Osteoporos Int. 7:39–43. 1997. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bune AJ, Hayman AR, Evans MJ and Cox TM:
Mice lacking tartrate-resistant acid phosphatase (Acp 5) have
disordered macrophage inflammatory responses and reduced clearance
of the pathogen, Staphylococcus aureus. Immunology. 102:103–113.
2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Blumer MJ, Hausott B, Schwarzer C, Hayman
AR, Stempel J and Fritsch H: Role of tartrate-resistant acid
phosphatase (TRAP) in long bone development. Mech Dev. 129:162–176.
2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Ortega N, Behonick DJ, Colnot C, Cooper
DNW and Werb Z: Galectin-3 is a downstream regulator of matrix
metalloproteinase-9 function during endochondral bone formation.
Mol Biol Cell. 16:3028–3039. 2005. View Article : Google Scholar : PubMed/NCBI
|
50
|
Vu TH, Shipley JM, Bergers G, Berger JE,
Helms JA, Hanahan D, Shapiro SD, Senior RM and Werb Z:
MMP-9/gelatinase B is a key regulator of growth plate angiogenesis
and apoptosis of hypertrophic chondrocytes. Cell. 93:411–422. 1998.
View Article : Google Scholar : PubMed/NCBI
|
51
|
David JP, Rincon M, Neff L, Horne WC and
Baron R: Carbonic anhydrase II is an AP-1 target gene in
osteoclasts. J Cell Physiol. 188:89–97. 2001. View Article : Google Scholar : PubMed/NCBI
|
52
|
Negishi-Koga T and Takayanagi H:
Ca2+-NFATc1 signaling is an essential axis of osteoclast
differentiation. Immunol Rev. 231:241–256. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Alsharidi A, Al-Hamed M and Alsuwaida A:
Carbonic anhydrase II deficiency: Report of a novel mutation. CEN
Case Rep. 5:108–112. 2016. View Article : Google Scholar : PubMed/NCBI
|
54
|
Nedeva IR, Vitale M, Elson A, Hoyland JA
and Bella J: Role of OSCAR signaling in osteoclastogenesis and bone
disease. Front Cell Dev Biol. 9:6411622021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nemeth K, Schoppet M, Al-Fakhri N, Helas
S, Jessberger R, Hofbauer LC and Goettsch C: The role of
osteoclast-associated receptor in osteoimmunology. J Immunol.
186:13–18. 2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wu H, Xu G and Li YP: Atp6v0d2 is an
essential component of the osteoclast-specific proton pump that
mediates extracellular acidification in bone resorption. J Bone
Miner Res. 24:871–885. 2009. View Article : Google Scholar : PubMed/NCBI
|
57
|
Chiu YH and Ritchlin CT: DC-STAMP: A key
regulator in osteoclast differentiation. J Cell Physiol.
231:2402–2407. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Yagi M, Miyamoto T, Sawatani Y, Iwamoto K,
Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K,
et al: DC-STAMP is essential for cell-cell fusion in osteoclasts
and foreign body giant cells. J Exp Med. 202:345–351. 2005.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Lee SH, Rho J, Jeong D, Sul JY, Kim T, Kim
N, Kang JS, Miyamoto T, Suda T, Lee SK, et al: v-ATPase V0 subunit
d2-deficient mice exhibit impaired osteoclast fusion and increased
bone formation. Nat Med. 12:1403–1409. 2006. View Article : Google Scholar : PubMed/NCBI
|
60
|
Kalu DN: The ovariectomized rat model of
postmenopausal bone loss. Bone Miner. 15:175–191. 1991. View Article : Google Scholar : PubMed/NCBI
|
61
|
Kim M, Kim JH, Hong S, Kwon B, Kim EY,
Jung HS and Sohn Y: Effects of melandrium firmum rohrbach on
RANKL-induced osteoclast differentiation and OVX rats. Mol Med Rep.
24:6102021. View Article : Google Scholar : PubMed/NCBI
|
62
|
Seibel MJ: Biochemical markers of bone
turnover: Part I: Biochemistry and variability. Clin Biochem Rev.
26:97–122. 2005.PubMed/NCBI
|
63
|
Kuo TR and Chen CH: Bone biomarker for the
clinical assessment of osteoporosis: Recent developments and future
perspectives. Biomark Res. 5:182017. View Article : Google Scholar : PubMed/NCBI
|
64
|
Väänänen HK and Härkönen PL: Estrogen and
bone metabolism. Maturitas. 23 (Suppl):S65–S69. 1996. View Article : Google Scholar : PubMed/NCBI
|
65
|
Tantikanlayaporn D, Wichit P,
Weerachayaphorn J, Chairoungdua A, Chuncharunee A, Suksamrarn A and
Piyachaturawat P: Bone sparing effect of a novel phytoestrogen
diarylheptanoid from Curcuma comosa Roxb. In ovariectomized rats.
PLoS One. 8:e787392013. View Article : Google Scholar : PubMed/NCBI
|
66
|
Wagner PP, Whittier DE, Foesser D, Boyd
SK, Chapurlat R and Szulc P: Bone microarchitecture decline and
risk of fall and fracture in men with poor physical performance-the
STRAMBO study. J Clin Endocrinol Metab. 106:e5180–e5194.
2021.PubMed/NCBI
|
67
|
Osterhoff G, Morgan EF, Shefelbine SJ,
Karim L, McNamara LM and Augat P: Bone mechanical properties and
changes with osteoporosis. Injury. 47 (Suppl 2):S11–S20. 2016.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Czeibert K, Baksa G, Grimm A, Nagy SA,
Kubinyi E and Petneházy Ö: MRI, CT and high resolution
macro-anatomical images with cryosectioning of a Beagle brain:
Creating the base of a multimodal imaging atlas. PLoS One.
14:e02134582019. View Article : Google Scholar : PubMed/NCBI
|
69
|
Lasbleiz J, Burgun A, Marin F, Rolland Y
and Duvauferrier R: Vertebral trabecular network analysis on CT
images. J Radiol. 86:645–649. 2005.(In French). View Article : Google Scholar : PubMed/NCBI
|
70
|
Cortet B, Chappard D, Boutry N, Dubois P,
Cotten A and Marchandise X: Relationship between computed
tomographic image analysis and histomorphometry for
microarchitectural characterization of human calcaneus. Calcif
Tissue Int. 75:23–31. 2004. View Article : Google Scholar : PubMed/NCBI
|
71
|
Torres A, Lorenzo V and Gonzalez-Posada
JM: Comparison of histomorphometry and computerized tomography of
the spine in quantitating trabecular bone in renal osteodystrophy.
Nephron. 44:282–287. 1986. View Article : Google Scholar : PubMed/NCBI
|
72
|
Park SB, Lee YJ and Chung CK: Bone mineral
density changes after ovariectomy in rats as an osteopenic model:
Stepwise description of double dorso-lateral approach. J Korean
Neurosurg Soc. 48:309–312. 2010. View Article : Google Scholar : PubMed/NCBI
|
73
|
Laib A, Kumer JL, Majumdar S and Lane NE:
The temporal changes of trabecular architecture in ovariectomized
rats assessed by MicroCT. Osteoporos Int. 12:936–941. 2001.
View Article : Google Scholar : PubMed/NCBI
|
74
|
Bouxsein ML, Boyd SK, Christiansen BA,
Guldberg RE, Jepsen KJ and Müller R: Guidelines for assessment of
bone microstructure in rodents using micro-computed tomography. J
Bone Miner Res. 25:1468–1486. 2010. View Article : Google Scholar : PubMed/NCBI
|
75
|
Wu Y, Adeeb S and Doschak MR: Using
Micro-CT derived bone microarchitecture to analyze bone stiffness-a
case study on osteoporosis rat bone. Front Endocrinol (Lausanne).
6:802015. View Article : Google Scholar : PubMed/NCBI
|
76
|
Lee KY, Kim JH, Kim EY, Yeom M, Jung HS
and Sohn Y: Water extract of Cnidii Rhizoma suppresses
RANKL-induced osteoclastogenesis in RAW 264.7 cell by inhibiting
NFATc1/c-Fos signaling and prevents ovariectomized bone loss in
SD-rat. BMC Complement Altern Med. 19:2072019. View Article : Google Scholar : PubMed/NCBI
|
77
|
Lee K, Chung YH, Ahn H, Kim H, Rho J and
Jeong D: Selective regulation of MAPK signaling mediates
RANKL-dependent osteoclast differentiation. Int J Biol Sci.
12:235–245. 2016. View Article : Google Scholar : PubMed/NCBI
|
78
|
Yang JH, Li B, Wu Q, Lv JG and Nie HY:
Echinocystic acid inhibits RANKL-induced osteoclastogenesis by
regulating NF-κB and ERK signaling pathways. Biochem Biophys Res
Commun. 477:673–677. 2016. View Article : Google Scholar : PubMed/NCBI
|
79
|
Xie BP, Shi LY, Li JP, Zeng Y, Liu W, Tang
SY, Jia LJ, Zhang J and Gan GX: Oleanolic acid inhibits
RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK
signaling pathway in RAW264.7 cells. Biomed Pharmacother.
117:1090452019. View Article : Google Scholar : PubMed/NCBI
|