1
|
Shi Y and Hu FB: The global implications
of diabetes and cancer. Lancet. 383:1947–1948. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lee HB, Ha H, Kim SI and Ziyadeh FN:
Diabetic kidney disease research: Where do we stand at the turn of
the century? Kidney Int Suppl. 77:S1–S2. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Samsu N: Diabetic nephropathy: Challenges
in pathogenesis, diagnosis, and treatment. Biomed Res Int.
2021:14974492021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Jin J, Hu K, Ye M, Wu D and He Q:
Rapamycin reduces podocyte apoptosis and is involved in autophagy
and mTOR/P70S6K/4EBP1 signaling. Cell Physiol Biochem. 48:765–772.
2018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lin X, Zhen X, Huang H, Wu H, You Y, Guo
P, Gu X and Yang F: Role of MiR-155 signal pathway in regulating
podocyte injury induced by TGF-β1. Cell Physiol Biochem.
42:1469–1480. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Tuttle KR, Bakris GL, Bilous RW, Chiang
JL, de Boer IH, Goldstein-Fuchs J, Hirsch IB, Kalantar-Zadeh K,
Narva AS, Navaneethan SD, et al: Diabetic kidney disease: A report
from an ADA consensus conference. Diabetes Care. 37:2864–2883.
2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wada J and Makino H: Inflammation and the
pathogenesis of diabetic nephropathy. Clin Sci (Lond). 124:139–152.
2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cassis P, Locatelli M, Cerullo D, Corna D,
Buelli S, Zanchi C, Villa S, Morigi M, Remuzzi G, Benigni A and
Zoja C: SGLT2 inhibitor dapagliflozin limits podocyte damage in
proteinuric nondiabetic nephropathy. JCI Insight. 3:e987202018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Heerspink HJL, Stefánsson BV,
Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray
JJV, Lindberg M, Rossing P, et al: Dapagliflozin in patients with
chronic kidney disease. N Engl J Med. 383:1436–1446. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Neuen BL, Young T, Heerspink HJL, Neal B,
Perkovic V, Billot L, Mahaffey KW, Charytan DM, Wheeler DC, Arnott
C, et al: SGLT2 inhibitors for the prevention of kidney failure in
patients with type 2 diabetes: A systematic review and
meta-analysis. Lancet Diabetes Endocrinol. 7:845–854. 2019.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Ala M: SGLT2 inhibition for cardiovascular
diseases, chronic kidney disease, and NAFLD. Endocrinology.
162:bqab1572021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Neumiller JJ, White JR Jr and Campbell RK:
Sodium-glucose co-transport inhibitors: Progress and therapeutic
potential in type 2 diabetes mellitus. Drugs. 70:377–385. 2010.
View Article : Google Scholar : PubMed/NCBI
|
13
|
El-Rous MA, Saber S, Raafat EM and Ahmed
AAE: Dapagliflozin, an SGLT2 inhibitor, ameliorates acetic
acid-induced colitis in rats by targeting NFκB/AMPK/NLRP3 axis.
Inflammopharmacology. 29:1169–1185. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Takahashi T, Morita K, Akagi R and Sassa
S: Heme oxygenase-1: A novel therapeutic target in oxidative tissue
injuries. Curr Med Chem. 11:1545–1561. 2004. View Article : Google Scholar : PubMed/NCBI
|
15
|
Kozakowska M, Dulak J and Józkowicz A:
Heme oxygenase-1-more than the cytoprotection. Postepy Biochem.
61:147–158. 2015.(In Polish). PubMed/NCBI
|
16
|
Ryter SW, Alam J and Choi AMK: Heme
oxygenase-1/carbon monoxide: From basic science to therapeutic
applications. Physiol Rev. 86:583–650. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Otterbein L, Chin BY, Otterbein SL, Lowe
VC, Fessler HE and Choi AM: Mechanism of hemoglobin-induced
protection against endotoxemia in rats: A ferritin-independent
pathway. Am J Physiol. 272:L268–L275. 1997.PubMed/NCBI
|
18
|
Arab HH, Al-Shorbagy MY and Saad MA:
Activation of autophagy and suppression of apoptosis by
dapagliflozin attenuates experimental inflammatory bowel disease in
rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem
Biol Interact. 335:1093682021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Samman WA, Selim SM, El Fayoumi HM,
El-Sayed NM, Mehanna ET and Hazem RM: Dapagliflozin ameliorates
cognitive impairment in aluminum-chloride-induced Alzheimer's
disease via modulation of AMPK/mTOR, oxidative stress and glucose
metabolism. Pharmaceuticals (Basel). 16:7532023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fuchs Y and Steller H: Programmed cell
death in animal development and disease. Cell. 147:742–758. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hutton HL, Ooi JD, Holdsworth SR and
Kitching AR: The NLRP3 inflammasome in kidney disease and
autoimmunity. Nephrology (Carlton). 21:736–744. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cookson BT and Brennan MA:
Pro-inflammatory programmed cell death. Trends Microbiol.
9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
24
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M,
Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F and Xiao J:
Pyroptosis in diabetic nephropathy. Clin Chim Acta. 523:131–143.
2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
He X, Fan X, Bai B, Lu N, Zhang S and
Zhang L: Pyroptosis is a critical immune-inflammatory response
involved in atherosclerosis. Pharmacol Res. 165:1054472021.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Tu Q, Li Y, Jin J, Jiang X, Ren Y and He
Q: Curcumin alleviates diabetic nephropathy via inhibiting podocyte
mesenchymal transdifferentiation and inducing autophagy in rats and
MPC5 cells. Pharm Biol. 57:778–786. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Chu SG, Villalba JA, Liang X, Xiong K,
Tsoyi K, Ith B, Ayaub EA, Tatituri RV, Byers DE, Hsu FF, et al:
Palmitic acid-rich high-fat diet exacerbates experimental pulmonary
fibrosis by modulating endoplasmic reticulum stress. Am J Respir
Cell Mol Biol. 61:737–746. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Urso CJ and Zhou H: Palmitic acid
lipotoxicity in microglia cells is ameliorated by unsaturated fatty
acids. Int J Mol Sci. 22:90932021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhu B, Liu Q, Han Q, Zeng B, Chen J and
Xiao Q: Downregulation of Krüppel-like factor 1 inhibits the
metastasis and invasion of cervical cancer cells. Mol Med Rep.
18:3932–3940. 2018.PubMed/NCBI
|
30
|
Zhang L, Jiang B, Zhu N, Tao M, Jun Y,
Chen X, Wang Q and Luo C: Mitotic checkpoint kinase Mps1/TTK
predicts prognosis of colon cancer patients and regulates tumor
proliferation and differentiation via PKCα/ERK1/2 and PI3K/Akt
pathway. Med Oncol. 37:52019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dong D, Wu J, Sheng L, Gong X, Zhang Z and
Yu C: FUNDC1 induces apoptosis and autophagy under oxidative stress
via PI3K/Akt/mTOR pathway in cataract lens cells. Curr Eye Res.
47:547–554. 2022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu J, Li QQ, Zhou H, Lu Y, Li JM, Ma Y,
Wang L, Fu T, Gong X, Weintraub M, et al: Selective tumor cell
killing by triptolide in p53 wild-type and p53 mutant ovarian
carcinomas. Med Oncol. 31:142014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gao ZD, Yan HD, Wu NH, Yao Q, Wan BB, Liu
XF, Zhang ZW, Chen QJ and Huang CP: Mechanistic insights into the
amelioration effects of lipopolysaccharide-induced acute lung
injury by baicalein: An integrated systems pharmacology study and
experimental validation. Pulm Pharmacol Ther. 73–74.
1021212022.
|
34
|
Huang B, Wen W and Ye S: Dapagliflozin
ameliorates renal tubular ferroptosis in diabetes via SLC40A1
stabilization. Oxid Med Cell Longev. 2022:97355552022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen X, Han Y, Gao P, Yang M, Xiao L,
Xiong X, Zhao H, Tang C, Chen G, Zhu X, et al: Disulfide-bond A
oxidoreductase-like protein protects against ectopic fat deposition
and lipid-related kidney damage in diabetic nephropathy. Kidney
Int. 95:880–895. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Du Q, Wu X, Ma K, Liu W, Liu P, Hayashi T,
Mizuno K, Hattori S, Fujisaki H and Ikejima T: Silibinin alleviates
ferroptosis of rat islet β cell INS-1 induced by the treatment with
palmitic acid and high glucose through enhancing
PINK1/parkin-mediated mitophagy. Arch Biochem Biophys.
743:1096442023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Pafili K, Maltezos E and Papanas N: The
potential of SGLT2 inhibitors in phase II clinical development for
treating type 2 diabetes. Expert Opin Investig Drugs. 25:1133–1152.
2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Pafili K and Papanas N: Luseogliflozin and
other sodium-glucose cotransporter 2 inhibitors: No enemy but time?
Expert Opin Pharmacother. 16:453–456. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Plosker GL: Dapagliflozin: A review of its
use in patients with type 2 diabetes. Drugs. 74:2191–2209. 2014.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Kimura T, Obata A, Shimoda M, Okauchi S,
Kanda-Kimura Y, Nogami Y, Moriuchi S, Hirukawa H, Kohara K,
Nakanishi S, et al: Protective effects of the SGLT2 inhibitor
luseogliflozin on pancreatic β-cells in db/db mice: The earlier and
longer, the better. Diabetes Obes Metab. 20:2442–2457. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Daems C, Welsch S, Boughaleb H,
Vanderroost J, Robert A, Sokal E and Lysy PA: Early treatment with
empagliflozin and GABA improves β-cell mass and glucose tolerance
in streptozotocin-treated mice. J Diabetes Res. 2019:28134892019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Jorgensen I, Rayamajhi M and Miao EA:
Programmed cell death as a defence against infection. Nat Rev
Immunol. 17:151–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Jourdan T, Godlewski G, Cinar R, Bertola
A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC, et
al: Activation of the Nlrp3 inflammasome in infiltrating
macrophages by endocannabinoids mediates beta cell loss in type 2
diabetes. Nat Med. 19:1132–1140. 2013. View Article : Google Scholar : PubMed/NCBI
|