1
|
Katta N, Loethen T, Lavie CJ and Alpert
MA: Obesity and coronary heart disease: Epidemiology, pathology,
and coronary artery imaging. Curr Probl Cardiol. 46:1006552021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Carneiro AV: Coronary heart disease in
diabetes mellitus: Risk factors and epidemiology. Rev Port Cardiol.
23:1359–1366. 2004.(In English, Portuguese). PubMed/NCBI
|
3
|
Goodarzi MO and Rotter JI: Genetics
Insights in the relationship between type 2 diabetes and coronary
heart disease. Circ Res. 126:1526–1548. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Schutt K, Muller-Wieland D and Marx N:
Diabetes mellitus and the heart. Exp Clin Endocrinol Diabetes.
127((S 01)): S102–S104. 2019.PubMed/NCBI
|
5
|
Battault S, Renguet E, Van Steenbergen A,
Horman S, Beauloye C and Bertrand L: Myocardial glucotoxicity:
Mechanisms and potential therapeutic targets. Arch Cardiovasc Dis.
113:736–748. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Saliminejad K, Khorram Khorshid HR,
Soleymani Fard S and Ghaffari SH: An overview of microRNAs:
Biology, functions, therapeutics, and analysis methods. J Cell
Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kalayinia S, Arjmand F, Maleki M,
Malakootian M and Singh CP: MicroRNAs: Roles in cardiovascular
development and disease. Cardiovasc Pathol. 50:1072962021.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Bayés-Genis A, Lanfear DE, de Ronde MWJ,
Lupon J, Leenders JJ, Liu Z, Zuithoff NPA, Eijkemans MJC, Zamora E,
De Antonio M, et al: Prognostic value of circulating microRNAs on
heart failure-related morbidity and mortality in two large diverse
cohorts of general heart failure patients. Eur J Heart Fail.
20:67–75. 2018. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Zhu L, Liu F, Xie H and Feng J: Diagnostic
performance of microRNA-133a in acute myocardial infarction: A
meta-analysis. Cardiol J. 25:260–267. 2018.PubMed/NCBI
|
10
|
Wei F, Ren W, Zhang X, Wu P and Fan J:
miR-425-5p is negatively associated with atrial fibrosis and
promotes atrial remodeling by targeting CREB1 in atrial
fibrillation. J Cardiol. 79:202–210. 2022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Pan X, He Y, Ling S, Chen Z and Yan G:
MiR-15a functions as a diagnostic biomarker for coronary artery
disease. Clin Lab. 66:2020. View Article : Google Scholar
|
12
|
Szydelko J and Matyjaszek-Matuszek B:
MicroRNAs as biomarkers for coronary artery disease related to type
2 diabetes mellitus-from pathogenesis to potential clinical
application. Int J Mol Sci. 24:6162022. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and
function. Genomics Proteomics Bioinformatics. 13:17–24. 2015.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Li SP, Lin ZX, Jiang XY and Yu XY:
Exosomal cargo-loading and synthetic exosome-mimics as potential
therapeutic tools. Acta Pharmacol Sin. 39:542–551. 2018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li C, Zhou T, Chen J, Li R, Chen H, Luo S,
Chen D, Cai C and Li W: The role of Exosomal miRNAs in cancer. J
Transl Med. 20:62022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Isaac R, Reis FCG, Ying W and Olefsky JM:
Exosomes as mediators of intercellular crosstalk in metabolism.
Cell Metab. 33:1744–1762. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lu M, Yuan S, Li S, Li L, Liu M and Wan S:
The exosome-derived biomarker in atherosclerosis and its clinical
application. J Cardiovasc Transl Res. 12:68–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang SS, Wu LJ, Li JJ, Xiao HB, He Y and
Yan YX: A meta-analysis of dysregulated miRNAs in coronary heart
disease. Life Sci. 215:170–181. 2018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Caraballo C, Desai NR, Mulder H, Alhanti
B, Wilson FP, Fiuzat M, Felker GM, Piña IL, O'Connor CM, Lindenfeld
J, et al: Clinical Implications of the New York Heart Association
Classification. J Am Heart Assoc. 8:e0142402019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Choi KH, Lee JM, Koo BK, Nam CW, Shin ES,
Doh JH, Rhee TM, Hwang D, Park J, Zhang J, et al: Prognostic
implication of functional incomplete revascularization and residual
functional SYNTAX score in patients with coronary artery disease.
JACC Cardiovasc Interv. 11:237–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ward JH: Hierarchical grouping to optimize
an objective function. J Am Stat Assoc. 58:236–244. 1963.
View Article : Google Scholar
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Dalen JE, Alpert JS, Goldberg RJ and
Weinstein RS: The epidemic of the 20(th) century: Coronary heart
disease. Am J Med. 127:807–812. 2014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang F, Dong J, Wang W, Wang X, Fu X,
Kumar NC and Zhang T: Evaluation of stenosis severity of coronary
calcified lesions using transluminal attenuation gradient: Clinical
application of 320-row volume CT. Minerva Med. 108:305–316. 2017.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Sirtori CR, Labombarda F, Castelnuovo S
and Perry R: The use of echocardiography for the non-invasive
evaluation of coronary artery disease. Ann Med. 49:134–141. 2017.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao RY, Yang J, Zheng Y, Li H, Zhao Q,
Ding Y, Li Q, Liu S, Wang L and Zheng H: The potential value of
Copeptin and Pentraxin3 for evaluating the severity of coronary
stenosis in patients with coronary artery disease. Clin Biochem.
87:32–38. 2021. View Article : Google Scholar : PubMed/NCBI
|
27
|
Mori MA, Ludwig RG, Garcia-Martin R,
Brandao BB and Kahn CR: Extracellular miRNAs: From biomarkers to
mediators of physiology and disease. Cell Metab. 30:656–673. 2019.
View Article : Google Scholar : PubMed/NCBI
|
28
|
He X, Kuang G, Wu Y and Ou C: Emerging
roles of exosomal miRNAs in diabetes mellitus. Clin Transl Med.
11:e4682021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu S, Lin Z, Zheng Z, Rao W, Lin Y, Chen
H, Xie Q, Chen Y and Hu Z: Serum exosomal microRNA-766-3p
expression is associated with poor prognosis of esophageal squamous
cell carcinoma. Cancer Sci. 111:3881–3892. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Su J, Li J, Yu Q, Wang J, Li X, Yang J, Xu
J, Liu Y, Xu Z, Ji L, et al: Exosomal miRNAs as potential
biomarkers for acute myocardial infarction. IUBMB Life. 72:384–400.
2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang L, Li H, Yuan M, Li D, Sun C and
Wang G: Serum exosomal MicroRNAs as potential circulating
biomarkers for endometriosis. Dis Markers. 2020:24563402020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Zheng D, Huo M, Li B, Wang W, Piao H, Wang
Y, Zhu Z, Li D, Wang T and Liu K: The role of exosomes and exosomal
MicroRNA in cardiovascular disease. Front Cell Dev Biol.
8:6161612021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Aghabozorgi AS, Ahangari N, Eftekhaari TE,
Torbati PN, Bahiraee A, Ebrahimi R and Pasdar A: Circulating
exosomal miRNAs in cardiovascular disease pathogenesis: New
emerging hopes. J Cell Physiol. 234:21796–21809. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang YX, Zeng RR, Yang Y and Shen Y:
Application of SYNTAX and its derivative scores in the selection of
revascularization strategies for complex coronary heart disease.
Chin Med Sci J. 37:340–348. 2022.PubMed/NCBI
|
35
|
Huang Y, Liu Y, Huang J, Gao L, Wu Z, Wang
L and Fan L: Let-7b-5p promotes cell apoptosis in Parkinson's
disease by targeting HMGA2. Mol Med Rep. 24:8202021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mandolesi G, Rizzo FR, Balletta S,
Stampanoni Bassi M, Gilio L, Guadalupi L, Nencini M, Moscatelli A,
Ryan CP, Licursi V, et al: The microRNA let-7b-5p Is negatively
associated with inflammation and disease severity in multiple
sclerosis. Cells. 10:3302021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhou R, Zhang Y, Du G, Han L, Zheng S,
Liang J, Huang X, Qin Y, Wu W, Chen M, et al: Down-regulated
let-7b-5p represses glycolysis metabolism by targeting AURKB in
asthenozoospermia. Gene. 663:83–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Gong L, Xiao J, Yi J, Lu F and Liu X:
Immunomodulatory effect of serum exosomes from crohn disease on
macrophages via Let-7b-5p/TLR4 Signaling. Inflamm Bowel Dis.
28:96–108. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Yin B, Shu B, Liu Z, Ding H and
Jia C: Differential expression of microRNA let-7b-5p regulates
burn-induced hyperglycemia. Oncotarget. 8:72886–72892. 2017.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Berkan O, Arslan S, Lalem T, Zhang L,
Sahin NO, Aydemir EI, Korkmaz O, Egilmez HR, Cekin N and Devaux Y:
Regulation of microRNAs in coronary atherosclerotic plaque.
Epigenomics. 11:1387–1397. 2019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ling H, Guo Z, Du S, Liao Y, Li Y, Ding C
and Song C: Serum exosomal miR-122-5p is a new biomarker for both
acute coronary syndrome and underlying coronary artery stenosis.
Biomarkers. 25:539–547. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li H, Chen M, Feng Q, Zhu L, Bai Z, Wang
B, Guo Z and Hou A: MicroRNA-34a in coronary heart disease:
Correlation with disease risk, blood lipid, stenosis degree,
inflammatory cytokines, and cell adhesion molecules. J Clin Lab
Anal. 36:e241382022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yu X, Xu JF, Song M, Zhang L, Li YH, Han
L, Tang MX, Zhang W, Zhong M and Wang ZH: Associations of
circulating microRNA-221 and 222 with the severity of coronary
artery lesions in acute coronary Syndrome patients. Angiology.
73:579–587. 2022. View Article : Google Scholar : PubMed/NCBI
|
44
|
Liu H, Xu W, Feng J, Ma H, Zhang J, Xie X,
Zhuang D, Shen W and Zhou W: Increased expression of plasma
miRNA-320a and let-7b-5p in heroin-dependent patients and its
clinical significance. Front Psychiatry. 12:6792062021. View Article : Google Scholar : PubMed/NCBI
|
45
|
Vadla GP, Daghat B, Patterson N, Ahmad V,
Perez G, Garcia A, Manjunath Y, Kaifi JT, Li G and Chabu CY:
Combining plasma extracellular vesicle Let-7b-5p, miR-184 and
circulating miR-22-3p levels for NSCLC diagnosis and drug
resistance prediction. Sci Rep. 12:66932022. View Article : Google Scholar : PubMed/NCBI
|