1
|
Slots J: Periodontitis: Facts, fallacies and the future. Periodontol. 75:7–23. 2017. View Article : Google Scholar
|
2
|
Teles F, Collman RG, Mominkhan D and Wang Y: Viruses, periodontitis, and comorbidities. Periodontol. 89:190–206. 2022. View Article : Google Scholar
|
3
|
Nagasawa Y, Misaki T, Ito S, Naka S, Wato K, Nomura R, Matsumoto-Nakano M and Nakano K: Title IgA nephropathy and oral bacterial species related to dental caries and periodontitis. Int J Mol Sci. 23:7252022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Suvan J, Leira Y, Sancho FM, Graziani F, Derks J and Tomasi C: Subgingival instrumentation for treatment of periodontitis. A systematic review. J Clin Periodontol. 22:155–175. 2020. View Article : Google Scholar
|
5
|
Haas AN, Furlaneto F, Gaio EJ, Gomes SC, Palioto DB, Castilho RM, Sanz M and Messora MR: New tendencies in non-surgical periodontal therapy. Braz Oral Res. 35:e0952021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Krishna R and De Stefano JA: Ultrasonic vs. hand instrumentation in periodontal therapy: Clinical outcomes. Periodontol. 71:113–127. 2016. View Article : Google Scholar
|
7
|
Li Y, Ling J and Jiang Q: Inflammasomes in alveolar bone loss. Front Immunol. 12:6910132021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen H, Wang Z, He Y, Peng L, Zhu J and Zhang X: Pyroptosis may play a crucial role in modifications of the immune microenvironment in periodontitis. J Periodontal Res. 57:977–990. 2022. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ning W, Acharya A, Li S, Schmalz G and Huang S: Identification of key pyroptosis-related genes and distinct pyroptosis-related clusters in periodontitis. Front Immunol. 13:8620492022. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sun X, Gao J, Meng X, Lu X, Zhang L and Chen R: Polarized macrophages in periodontitis: Characteristics, function, and molecular signaling. Front Immunol. 12:7633342021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Sharma BR and Kanneganti TD: NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol. 22:550–559. 2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hooftman A, Angiari S, Hester S, Corcoran SE, Runtsch MC, Ling C, Ruzek MC, Slivka PF, McGettrick AF, Banahan K, et al: The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32:468–478.e7. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao P, Yue Z, Nie L, Zhao Z and Wang Q, Chen J and Wang Q: Hyperglycaemia-associated macrophage pyroptosis accelerates periodontal inflamm-aging. J Clin Periodontol. 48:1379–1392. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
He Y, Wang Y, Jia X, Li Y, Yang Y, Pan L, Zhao R, Han Y, Wang F, Guan X and Hou T: Glycolytic reprogramming controls periodontitis-associated macrophage pyroptosis via AMPK/SIRT1/NF-κB signaling pathway. Int Immunopharmacol. 119:1101922023. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tóth F, Cseh EK and Vécsei L: Natural molecules and neuroprotection: Kynurenic acid, pantethine and α-lipoic acid. Int J Mol Sci. 22:4032021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Agudelo LZ, Ferreira DMS, Cervenka I, Bryzgalova G, Dadvar S, Jannig PR, Pettersson-Klein AT, Lakshmikanth T, Sustarsic EG, Porsmyr-Palmertz M, et al: Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab. 27:378–392.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ishida Y, Fujita H, Aratani S, Chijiiwa M, Taniguchi N, Yokota M, Ogihara Y, Uoshima N, Nagashima F, Uchino H and Nakajima T: The NRF2-PGC-1β pathway activates kynurenine aminotransferase 4 via attenuation of an E3 ubiquitin ligase, synoviolin, in a cecal ligation/perforation-induced septic mouse model. Mol Med Rep. 18:2467–2475. 2018.PubMed/NCBI
|
18
|
An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X, Luan W, Ma F, Ni L, Tang X, et al: Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 33:12515–12527. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, et al: PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 26:1012542019. View Article : Google Scholar : PubMed/NCBI
|
20
|
He F, Ru X and Wen T: NRF2, a transcription factor for stress response and beyond. Int J Mol Sci. 21:47772020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Tonelli C, Chio IIC and Tuveson DA: Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29:1727–1745. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
He F, Antonucci L and Karin M: NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis. 41:405–416. 2020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bellezza I, Giambanco I, Minelli A and Donato R: Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res. 1865:721–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ulasov AV, Rosenkranz AA, Georgiev GP and Sobolev AS: Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 291:1201112022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Luo X, Weng X, Bao X, Bai X, Lv Y, Zhang S, Chen Y, Zhao C, Zeng M, Huang J, et al: A novel anti-atherosclerotic mechanism of quercetin: Competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis. Redox Biol. 57:1025112022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Luo X, Bao X, Weng X, Bai X, Feng Y, Huang J, Liu S, Jia H and Yu B: The protective effect of quercetin on macrophage pyroptosis via TLR2/Myd88/NF-κB and ROS/AMPK pathway. Life Sci. 291:1200642022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Cai J, Yi M, Tan Y, Li X, Li G, Zeng Z, Xiong W and Xiang B: Natural product triptolide induces GSDME-mediated pyroptosis in head and neck cancer through suppressing mitochondrial hexokinase-II. J Exp Clin Cancer Res. 40:1902021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kwon T, Lamster IB and Levin L: Current concepts in the management of periodontitis. Int Dent J. 71:462–476. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mombelli A: Microbial colonization of the periodontal pocket and its significance for periodontal therapy. Periodontol. 76:85–96. 2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Sztukowska MN, Roky M and Demuth DR: Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol. 34:169–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang W, Zheng C, Yang J and Li B: Intersection between macrophages and periodontal pathogens in periodontitis. J Leukoc Biol. 110:577–583. 2021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Zhuang Z, Yoshizawa-Smith S, Glowacki A, Maltos K, Pacheco C, Shehabeldin M, Mulkeen M, Myers N, Chong R, Verdelis K, et al: Induction of M2 macrophages prevents bone loss in murine periodontitis models. J Dent Res. 98:200–208. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang L, Li X, Yan H and Huang L: Salivary matrix metalloproteinase (MMP)-8 as a biomarker for periodontitis: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore). 97:e96422018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Luchian I, Goriuc A, Sandu D and Covasa M: The role of matrix metalloproteinases (MMP-8, MMP-9, MMP-13) in periodontal and peri-implant pathological processes. Int J Mol Sci. 23:18062022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhang B, Yang Y, Yi J, Zhao Z and Ye R: Hyperglycemia modulates M1/M2 macrophage polarization via reactive oxygen species overproduction in ligature-induced periodontitis. J Periodontal Res. 56:991–1005. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Meng Q, Li Y, Ji T, Chao Y, Li J, Fu Y, Wang S, Chen Q, Chen W, Huang F, et al: Estrogen prevent atherosclerosis by attenuating endothelial cell pyroptosis via activation of estrogen receptor α-mediated autophagy. J Adv Res. 28:149–164. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Almubarak A, Tanagala KKK, Papapanou PN, Lalla E and Momen-Heravi F: Disruption of monocyte and macrophage homeostasis in periodontitis. Front Immunol. 11:3302020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xia Y, Zhou K, Sun M, Shu R, Qian J and Xie Y: The miR-223-3p regulates pyroptosis through NLRP3-caspase 1-GSDMD signal axis in periodontitis. Inflammation. 44:2531–2542. 2021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sordi MB, Magini RS, Panahipour L and Gruber R: Pyroptosis-mediated periodontal disease. Int J Mol Sci. 23:3722021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Xu X, Zhang T, Xia X, Yin Y, Yang S, Ai D, Qin H, Zhou M and Song J: Pyroptosis in periodontitis: From the intricate interaction with apoptosis, NETosis, and necroptosis to the therapeutic prospects. Front Cell Infect Microbiol. 12:9532772022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Long JX, Tian MZ, Chen XY, Yu HH, Ding H, Liu F and Du K: The role of NLRP3 inflammasome-mediated pyroptosis in ischemic stroke and the intervention of traditional Chinese medicine. Front Pharmacol. 14:11511962023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T and Chu XM: NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis. 11:7762020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, et al: Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9:1712018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Qiu Y, Li L, Guo X, Liu J, Xu L and Li Y: Exogenous spermine inhibits high glucose/oxidized LDL-induced oxidative stress and macrophage pyroptosis by activating the Nrf2 pathway. Exp Ther Med. 23:3102022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Chiang SK, Chen SE and Chang LC: The role of HO-1 and its crosstalk with oxidative stress in cancer cell survival. Cells. 10:24012021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Huang C, Zhang C, Yang P, Chao R, Yue Z, Li C, Guo J and Li M: Eldecalcitol inhibits LPS-induced NLRP3 inflammasome-dependent pyroptosis in human gingival fibroblasts by activating the Nrf2/HO-1 signaling pathway. Drug Des Devel Ther. 14:4901–4913. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Kang JY, Xu MM, Sun Y, Ding ZX, Wei YY, Zhang DW, Wang YG, Shen JL, Wu HM and Fei GH: Melatonin attenuates LPS-induced pyroptosis in acute lung injury by inhibiting NLRP3-GSDMD pathway via activating Nrf2/HO-1 signaling axis. Int Immunopharmacol. 109:1087822022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zou Y, Luo X, Feng Y, Fang S, Tian J, Yu B and Li J: Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation. Chem Biol Interact. 345:1095732021. View Article : Google Scholar : PubMed/NCBI
|