
Sepsis‑induced cardiac dysfunction and pathogenetic mechanisms (Review)
- Authors:
- Jiayu Song
- Xiaolei Fang
- Kaixuan Zhou
- Huiwei Bao
- Lijing Li
-
Affiliations: Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin 130117, P.R. China - Published online on: October 17, 2023 https://doi.org/10.3892/mmr.2023.13114
- Article Number: 227
-
Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Hammond N, Kumar A, Kaur P, Tirupakuzhi Vijayaraghavan BK, Ghosh A, Grattan S, Jha V, Mathai D and Venkatesh B; Sepsis in India Prevalence Study (SIPS) Investigator Network, : Estimates of sepsis prevalence and outcomes in adult patients in the ICU in India: A cross-sectional Study. Chest. 161:1543–1554. 2022. View Article : Google Scholar : PubMed/NCBI | |
Salomão R, Ferreira BL, Salomão MC, Santos SS, Azevedo LCP and Brunialti MKC: Sepsis: Evolving concepts and challenges. Braz J Med Biol Res. 52:e85952019. View Article : Google Scholar : PubMed/NCBI | |
Shankar-Hari M, Phillips G, Levy ML, Seymour CW, Liu VX, Deutschman CS, Angus DC, Rubenfeld GD and Singer M; Sepsis Definitions Task Force, : Developing a new definition and assessing new clinical criteria for septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:775–787. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM and Sibbald WJ: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM consensus conference committee. American college of chest physicians/society of critical care medicine. Chest. 101:1644–1655. 1992. View Article : Google Scholar : PubMed/NCBI | |
Makic MBF and Bridges E: CE: Managing sepsis and septic shock: Current guidelines and definitions. Am J Nurs. 118:34–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Delano MJ and Ward PA: The immune system's role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 274:330–353. 2016. View Article : Google Scholar : PubMed/NCBI | |
Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F and Scolletta S: Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. J Crit Care. 29:500–511. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rello J, Valenzuela-Sánchez F, Ruiz-Rodriguez M and Moyano S: Sepsis: A review of advances in management. Adv Ther. 34:2393–2411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Skirecki T and Cavaillon JM: Inner sensors of endotoxin-implications for sepsis research and therapy. FEMS Microbiol Rev. 43:239–256. 2019. View Article : Google Scholar : PubMed/NCBI | |
Torres L, Pickkers P and van der Poll T: Sepsis-induced immunosuppression. Annu Rev Physiol. 84:157–181. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ehrman RR, Sullivan AN, Favot MJ, Sherwin RL, Reynolds CA, Abidov A and Levy PD: Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: A review of the literature. Crit Care. 22:1122018. View Article : Google Scholar : PubMed/NCBI | |
Purcarea A and Sovaila S: Sepsis, a 2020 review for the internist. Rom J Intern Med. 58:129–137. 2020.PubMed/NCBI | |
Gotts JE and Matthay MA: Sepsis: Pathophysiology and clinical management. BMJ. 353:i15852016. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Cai S and Su J: The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 20:53762019. View Article : Google Scholar : PubMed/NCBI | |
Ackerman MH, Ahrens T, Kelly J and Pontillo A: Sepsis. Crit Care Nurs Clin North Am. 33:407–418. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Feng YW and Yao YM: Potential therapy strategy: Targeting mitochondrial dysfunction in sepsis. Mil Med Res. 5:412018.PubMed/NCBI | |
Cheung R, Pizza G, Chabosseau P, Rolando D, Tomas A, Burgoyne T, Wu Z, Salowka A, Thapa A, Macklin A, et al: Glucose-dependent miR-125b is a negative regulator of β-cell function. Diabetes. 71:1525–1545. 2022. View Article : Google Scholar : PubMed/NCBI | |
Doke T and Susztak K: The multifaceted role of kidney tubule mitochondrial dysfunction in kidney disease development. Trends Cell Biol. 32:841–853. 2022. View Article : Google Scholar : PubMed/NCBI | |
Park K and Lee MS: Essential role of lysosomal Ca2+-mediated TFEB activation in mitophagy and functional adaptation of pancreatic β-cells to metabolic stress. Autophagy. 18:3043–3045. 2022. View Article : Google Scholar : PubMed/NCBI | |
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A and Fon EA: Mitochondrial quality control in health and in Parkinson's disease. Physiol Rev. 102:1721–1755. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hocaoglu H and Sieber M: Mitochondrial respiratory quiescence: A new model for examining the role of mitochondrial metabolism in development. Semin Cell Dev Biol. 138:94–103. 2023. View Article : Google Scholar : PubMed/NCBI | |
Subramanian GN, Yeo AJ, Gatei MH, Coman DJ and Lavin MF: Metabolic stress and mitochondrial dysfunction in ataxia-telangiectasia. Antioxidants (Basel). 11:6532022. View Article : Google Scholar : PubMed/NCBI | |
Joffre J and Hellman J: Oxidative stress and endothelial dysfunction in sepsis and acute inflammation. Antioxid Redox Signal. 35:1291–1307. 2021. View Article : Google Scholar : PubMed/NCBI | |
Doi K, Leelahavanichkul A, Yuen PST and Star RA: Animal models of sepsis and sepsis-induced kidney injury. J Clin Invest. 119:2868–2878. 2009. View Article : Google Scholar : PubMed/NCBI | |
Salari S, Ghorbanpour A, Marefati N, Baluchnejadmojarad T and Roghani M: Therapeutic effect of lycopene in lipopolysaccharide nephrotoxicity through alleviation of mitochondrial dysfunction, inflammation, and oxidative stress. Mol Biol Rep. 49:8429–8438. 2022. View Article : Google Scholar : PubMed/NCBI | |
de Souza Stork S, Hübner M, Biehl E, Danielski LG, Bonfante S, Joaquim L, Denicol T, Cidreira T, Pacheco A, Bagio E, et al: Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction. Inflammation. 45:2352–2367. 2022. View Article : Google Scholar : PubMed/NCBI | |
Soriano FG, Nogueira AC, Caldini EG, Lins MH, Teixeira AC, Cappi SB, Lotufo PA, Bernik MM, Zsengellér Z, Chen M and Szabó C: Potential role of poly(adenosine 5′-diphosphate-ribose) polymerase activation in the pathogenesis of myocardial contractile dysfunction associated with human septic shock. Crit Care Med. 34:1073–1079. 2006. View Article : Google Scholar : PubMed/NCBI | |
Galley HF: Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 107:57–64. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cimolai MC, Alvarez S, Bode C and Bugger H: Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci. 16:17763–17778. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Xu H, Van Vleck A, Mawla AM, Li AM, Ye J, Huising MO and Annes JP: β-Cell succinate dehydrogenase deficiency triggers metabolic dysfunction and insulinopenic diabetes. Diabetes. 71:1439–1453. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Cheng Y, Chen P, Huang Z and Yang L: Caffeine citrate protects against sepsis-associated encephalopathy and inhibits the UCP2/NLRP3 axis in astrocytes. J Interferon Cytokine Res. 42:267–278. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Ding Y, Fang C, Wang H and Kong L: The emerging role of ferroptosis in sepsis, opportunity or challenge? Infect Drug Resist. 16:5551–5562. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ji L, He Q, Liu Y, Deng Y, Xie M, Luo K, Cai X, Zuo Y, Wu W, Li Q, et al: Ketone body β-hydroxybutyrate prevents myocardial oxidative stress in septic cardiomyopathy. Oxid Med Cell Longev. 2022:25138372022. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Lin X, Chen Q, Wang X, Wu Y and Zhao X: Quercetin inhibits the NOX2/ROS-mediated NF-κB/TXNIP signaling pathway to ameliorate pyroptosis of cardiomyocytes to relieve sepsis-induced cardiomyopathy. Toxicol Appl Pharmacol. 477:1166722023. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Pan H, Zhang Y, Zheng Z, Xiao W, Hong X, Chen F, Peng X, Pei Y, Rong J, et al: Ginsenoside-Rg1 attenuates sepsis-induced cardiac dysfunction by modulating mitochondrial damage via the P2X7 receptor-mediated Akt/GSK-3β signaling pathway. J Biochem Mol Toxicol. 36:e228852022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Yang S, Jing G, Wang Q, Zeng C, Song X and Li X: Inhibition of ferroptosis protects sepsis-associated encephalopathy. Cytokine. 161:1560782023. View Article : Google Scholar : PubMed/NCBI | |
Vanasco V, Saez T, Magnani ND, Pereyra L, Marchini T, Corach A, Vaccaro MI, Corach D, Evelson P and Alvarez S: Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radic Biol Med. 77:1–9. 2014. View Article : Google Scholar : PubMed/NCBI | |
Burgoyne J, Rudyk O, Mayr M and Eaton P: Nitrosative protein oxidation is modulated during early endotoxemia. Nitric Oxide. 25:118–124. 2011. View Article : Google Scholar : PubMed/NCBI | |
Boveris A, Alvarez S and Navarro A: The role of mitochondrial nitric oxide synthase in inflammation and septic shock. Free Radic Biol Med. 33:1186–1193. 2002. View Article : Google Scholar : PubMed/NCBI | |
Escames G, López L, Ortiz F, López A, García JA, Ros E and Acuña-Castroviejo D: Attenuation of cardiac mitochondrial dysfunction by melatonin in septic mice. FEBS J. 274:2135–2147. 2007. View Article : Google Scholar : PubMed/NCBI | |
van de Sandt AM, Windler R, Gödecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, et al: Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Basic Res Cardiol. 108:3302013. View Article : Google Scholar : PubMed/NCBI | |
McCall CE, Zhu X, Zabalawi M, Long D, Quinn MA, Yoza BK, Stacpoole PW and Vachharajani V: Sepsis, pyruvate, and mitochondria energy supply chain shortage. J Leukoc Biol. 112:1509–1514. 2022. View Article : Google Scholar : PubMed/NCBI | |
Joshi MS, Julian MW, Huff JE, Bauer JA, Xia Y and Crouser ED: Calcineurin regulates myocardial function during acute endotoxemia. Am J Respir Crit Care Med. 173:999–1007. 2006. View Article : Google Scholar : PubMed/NCBI | |
Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, et al: Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 110:5887–5892. 2013. View Article : Google Scholar : PubMed/NCBI | |
Giorgio V, Guo L, Bassot C, Petronilli V and Bernardi P: Calcium and regulation of the mitochondrial permeability transition. Cell Calcium. 70:56–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bernardi P: The mitochondrial permeability transition pore: A mystery solved? Front Physiol. 4:952013. View Article : Google Scholar : PubMed/NCBI | |
Rasola A and Bernardi P: Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium. 50:222–233. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi A, Kim B and Matsuoka S: The destiny of Ca(2+) released by mitochondria. J Physiol Sci. 65:11–24. 2015. View Article : Google Scholar : PubMed/NCBI | |
Halestrap AP: Calcium, mitochondria and reperfusion injury: A pore way to die. Biochem Soc Trans. 34:232–237. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bernardi P and Di Lisa F: The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 78:100–106. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ballard-Croft C, Maass DL, Sikes PJ and Horton JW: Sepsis and burn complicated by sepsis alter cardiac transporter expression. Burns. 33:72–80. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S and Neviere R: Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med. 36:2590–2596. 2008. View Article : Google Scholar : PubMed/NCBI | |
Supinski GS, Murphy MP and Callahan LA: MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol. 297:R1095–R1102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zang QS, Sadek H, Maass DL, Martinez B, Ma L, Kilgore JA, Williams NS, Frantz DE, Wigginton JG, Nwariaku FE, et al: Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model. Am J Physiol Heart Circ Physiol. 302:H1847–H1859. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vanasco V, Cimolai MC, Evelson P and Alvarez S: The oxidative stress and the mitochondrial dysfunction caused by endotoxemia are prevented by alpha-lipoic acid. Free Radic Res. 42:815–823. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vandewalle J and Libert C: Sepsis: A failing starvation response. Trends Endocrinol Metab. 33:292–304. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lelubre C and Vincent JL: Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 14:417–427. 2018. View Article : Google Scholar : PubMed/NCBI | |
Collins K and Huen SC: Metabolism and nutrition in sepsis: In need of a paradigm shift. Nephron. Sep 13–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Wolowczuk I, Verwaerde C, Viltart O, Delanoye A, Delacre M, Pot B and Grangette C: Feeding our immune system: Impact on metabolism. Clin Dev Immunol. 2008:6398032008. View Article : Google Scholar : PubMed/NCBI | |
Rittig N, Bach E, Thomsen HH, Pedersen SB, Nielsen TS, Jørgensen JO, Jessen N and Møller N: Regulation of lipolysis and adipose tissue signaling during acute endotoxin-induced inflammation: A human randomized crossover trial. PLoS One. 11:e01621672016. View Article : Google Scholar : PubMed/NCBI | |
Drosatos K, Drosatos-Tampakaki Z, Khan R, Homma S, Schulze PC, Zannis VI and Goldberg IJ: Inhibition of c-Jun-N-terminal kinase increases cardiac peroxisome proliferator-activated receptor alpha expression and fatty acid oxidation and prevents lipopolysaccharide-induced heart dysfunction. J Biol Chem. 286:36331–36339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xu RL, He P and Chen R: MAR1 suppresses inflammatory response in LPS-induced RAW 264.7 macrophages and human primary peripheral blood mononuclear cells via the SIRT1/PGC-1α/PPAR-γ pathway. J Inflamm (Lond). 18:82021. View Article : Google Scholar : PubMed/NCBI | |
Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC and Goldberg IJ: Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 6:550–562. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Adrogue JV, Golfman L, Uray I, Lemm J, Youker K, Noon GP, Frazier OH and Taegtmeyer H: Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18:1692–1700. 2004. View Article : Google Scholar : PubMed/NCBI | |
Memon RA, Fuller J, Moser AH, Smith PJ, Feingold KR and Grunfeld C: In vivo regulation of acyl-CoA synthetase mRNA and activity by endotoxin and cytokines. Am J Physiol. 275:E64–E72. 1998.PubMed/NCBI | |
Feingold K, Kim M, Shigenaga J, Moser A and Grunfeld C: Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab. 286:E201–E207. 2004. View Article : Google Scholar : PubMed/NCBI | |
Rossi MA, Celes MRN, Prado CM and Saggioro FP: Myocardial structural changes in long-term human severe sepsis/septic shock may be responsible for cardiac dysfunction. Shock. 27:10–18. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koskinas J, Gomatos IP, Tiniakos DG, Memos N, Boutsikou M, Garatzioti A, Archimandritis A and Betrosian A: Liver histology in ICU patients dying from sepsis: A clinico-pathological study. World J Gastroenterol. 14:1389–1393. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, et al: Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 339:211–214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aubert G, Martin OJ, Horton JL, Lai L, Vega RB, Leone TC, Koves T, Gardell SJ, Krüger M, Hoppel CL, et al: The failing heart relies on ketone bodies as a fuel. Circulation. 133:698–705. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ and Medzhitov R: Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell. 166:1512–1525.e12. 2016. View Article : Google Scholar : PubMed/NCBI | |
Umbarawan Y, Syamsunarno MRAA, Obinata H, Yamaguchi A, Sunaga H, Matsui H, Hishiki T, Matsuura T, Koitabashi N, Obokata M, et al: Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice. Metabolism. 77:47–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Soni S, Martens MD, Takahara S, Silver HL, Maayah ZH, Ussher JR, Ferdaoussi M and Dyck JRB: Exogenous ketone ester administration attenuates systemic inflammation and reduces organ damage in a lipopolysaccharide model of sepsis. Biochim Biophys Acta Mol Basis Dis. 1868:1665072022. View Article : Google Scholar : PubMed/NCBI | |
Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci J, Brunet F, Villemant D, Carli A and Raichvarg D: Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation. 75:533–541. 1987. View Article : Google Scholar : PubMed/NCBI | |
Chew MS, Shekar K, Brand BA, Norin C and Barnett AG: Depletion of myocardial glucose is observed during endotoxemic but not hemorrhagic shock in a porcine model. Crit Care. 17:R1642013. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, Shi J, Jiang L, Feng S, Zhao Y, et al: ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 254:1096982023. View Article : Google Scholar : PubMed/NCBI | |
Standage SW, Bennion BG, Knowles TO, Ledee DR, Portman MA, McGuire JK, Liles WC and Olson AK: PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis. Am J Physiol Heart Circ Physiol. 312:H239–H249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Ma H, Zhang X, Tu F, Wang X, Ha T, Fan M, Liu L, Xu J, Yu K, et al: Enhanced glycolytic metabolism contributes to cardiac dysfunction in polymicrobial sepsis. J Infect Dis. 215:1396–1406. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lang CH, Frost RA, Jefferson LS, Kimball SR and Vary TC: Endotoxin-induced decrease in muscle protein synthesis is associated with changes in eIF2B, eIF4E, and IGF-I. Am J Physiol Endocrinol Metab. 278:E1133–E1143. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lang CH, Frost RA, Nairn AC, MacLean DA and Vary TC: TNF-alpha impairs heart and skeletal muscle protein synthesis by altering translation initiation. Am J Physiol Endocrinol Metab. 282:E336–E347. 2002. View Article : Google Scholar : PubMed/NCBI | |
Plank LD and Hill GL: Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J Surg. 24:630–638. 2000. View Article : Google Scholar : PubMed/NCBI | |
Warner BW, Hummel RP III, Hasselgren PO, James JH and Fischer JE: Inhibited amino acid uptake in skeletal muscle during starvation. JPEN J Parenter Enteral Nutr. 13:344–348. 1989. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Bao X, Cui M, Wang C, Ji J, Jing J, Zhou X, Chen K and Tang L: Identification and validation of key biomarkers based on RNA methylation genes in sepsis. Front Immunol. 14:12318982023. View Article : Google Scholar : PubMed/NCBI | |
Hotchkiss RS, Song SK, Neil JJ, Chen RD, Manchester JK, Karl IE, Lowry OH and Ackerman JJ: Sepsis does not impair tricarboxylic acid cycle in the heart. Am J Physiol. 260:C50–C57. 1991. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Wang D, Dong D, Xu L, Xie M, Wang Y, Ni T, Jiang W, Zhu X, Ning N, et al: Altered intestinal microbiome and metabolome correspond to the clinical outcome of sepsis. Crit Care. 27:1272023. View Article : Google Scholar : PubMed/NCBI | |
Chang WH and Lai AG: The pan-cancer mutational landscape of the PPAR pathway reveals universal patterns of dysregulated metabolism and interactions with tumor immunity and hypoxia. Ann N Y Acad Sci. 1448:65–82. 2019. View Article : Google Scholar : PubMed/NCBI | |
Anghel SI and Wahli W: Fat poetry: A kingdom for PPAR gamma. Cell Res. 17:486–511. 2007. View Article : Google Scholar : PubMed/NCBI | |
Christodoulides C and Vidal-Puig A: PPARs and adipocyte function. Mol Cell Endocrinol. 318:61–68. 2010. View Article : Google Scholar : PubMed/NCBI | |
Villarroel-Vicente C, Gutiérrez-Palomo S, Ferri J, Cortes D and Cabedo N: Natural products and analogs as preventive agents for metabolic syndrome via peroxisome proliferator-activated receptors: An overview. Eur J Med Chem. 221:1135352021. View Article : Google Scholar : PubMed/NCBI | |
von Knethen A, Soller M and Brüne B: Peroxisome proliferator-activated receptor gamma (PPAR gamma) and sepsis. Arch Immunol Ther Exp (Warsz). 55:19–25. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Jia Y, Feng Y, Cui R, Wang Z, Qu K, Liu C and Zhang J: Methane-rich saline protects against sepsis-induced liver damage by regulating the PPAR-γ/NF-κB signaling pathway. Shock. 52:e163–e172. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gong W, Zhu H, Lu L, Hou Y and Dou H: A benzenediamine analog FC-99 drives M2 macrophage polarization and alleviates lipopolysaccharide-(LPS-) induced liver injury. Mediators Inflamm. 2019:78230692019. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Miao J, Lau N, Zhang C, Ye P, Du S, Mei L, Weng H, Xu Q, Liu X, et al: Rhein attenuates lipopolysaccharide-primed inflammation through NF-κB inhibition in RAW264.7 cells: targeting the PPAR-γ signal pathway. Can J Physiol Pharmacol. 98:357–365. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Ge Y, Wang F, Ming Y, Wu Z, Wang J, Sun S, Huang S, Chen M, Xiao W and Yao S: Protectin DX ameliorates inflammation in sepsis-induced acute lung injury through mediating PPARγ/NF-κB pathway. Immunol Res. 68:280–288. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Shao X, He Y, Lu E, Zhu L and Tang W: Norisoboldine attenuates sepsis-induced acute lung injury by modulating macrophage polarization via PKM2/HIF-1α/PGC-1α pathway. Biol Pharm Bull. 44:1536–1547. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu XX, Wang X, Jiao SY, Liu Y, Shi L, Xu Q, Wang JJ, Chen YE, Zhang Q, Song YT, et al: Cardiomyocyte peroxisome proliferator-activated receptor α prevents septic cardiomyopathy via improving mitochondrial function. Acta Pharmacol Sin. Jun 16–2023.(Epub ahead of print). | |
Chen W, Wang Y, Zhou Y, Xu Y, Bo X and Wu J: M1 macrophages increase endothelial permeability and enhance p38 phosphorylation via PPAR-γ/CXCL13-CXCR5 in sepsis. Int Arch Allergy Immunol. 183:997–1006. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mitchell S, Vargas J and Hoffmann A: Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med. 8:227–241. 2016. View Article : Google Scholar : PubMed/NCBI | |
Somensi N, Rabelo TK, Guimarães AG, Quintans-Junior LJ, de Souza Araújo AA, Moreira JCF and Gelain DP: Carvacrol suppresses LPS-induced pro-inflammatory activation in RAW 264.7 macrophages through ERK1/2 and NF-kB pathway. Int Immunopharmacol. 75:1057432019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Wu Y, Wang Y, Cheng Y, Yao L, Liu Y, Qian H, Yang H and Shen F: NF-κB p65 Knock-down inhibits TF, PAI-1 and promotes activated protein C production in lipopolysaccharide-stimulated alveolar epithelial cells type II. Exp Lung Res. 44:241–251. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Chen J, Zhao W, Zhuo CH and Chen Q: Inhibition of miR-181a attenuates sepsis-induced inflammation and apoptosis by activating Nrf2 and inhibiting NF-κB pathways via targeting SIRT1. Kaohsiung J Med Sci. 37:200–207. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu SF and Malik AB: NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 290:L622–L645. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zang B and Wang L: Synthesis and protective effect of pyrazole conjugated imidazo[1,2-a]pyrazine derivatives against acute lung injury in sepsis rats via attenuation of NF-κB, oxidative stress, and apoptosis. Acta Pharm. 73:341–362. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cao L and Yang K: Paeoniflorin attenuated TREM-1-mediated inflammation in THP-1 cells. J Healthc Eng. 2022:70516432022. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xu T, Jin J, Ting Gao MM, Wan B, Gong M, Bai L, Lv T and Song Y: Topotecan reduces sepsis-induced acute lung injury and decreases the inflammatory response via the inhibition of the NF-κB signaling pathway. Pulm Circ. 12:e120702022. View Article : Google Scholar : PubMed/NCBI | |
Franco JH, Chen X and Pan ZK: Novel treatments targeting the dysregulated cell signaling pathway during sepsis. J Cell Signal. 2:228–234. 2021.PubMed/NCBI | |
Ruan W, Ji X, Qin Y, Zhang X, Wan X, Zhu C, Lv C, Hu C, Zhou J, Lu L and Guo X: Harmine alleviated sepsis-induced cardiac dysfunction by modulating macrophage polarization via the STAT/MAPK/NF-κB pathway. Front Cell Dev Biol. 9:7922572022. View Article : Google Scholar : PubMed/NCBI | |
Dang X, Huan X, Du X, Chen X, Bi M, Yan C, Jiao Q and Jiang H: Correlation of ferroptosis and other types of cell death in neurodegenerative diseases. Neurosci Bull. 38:938–952. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim J and Wessling-Resnick M: The role of iron metabolism in lung inflammation and injury. J Allergy Ther. 3 (Suppl 4):S0042012. | |
de Lima VM, Batista BB and da Silva Neto JF: The regulatory protein ChuP connects heme and siderophore-mediated iron acquisition systems required for chromobacterium violaceum virulence. Front Cell Infect Microbiol. 12:8735362022. View Article : Google Scholar : PubMed/NCBI | |
Englert FA, Seidel RA, Galler K, Gouveia Z, Soares MP, Neugebauer U, Clemens MG, Sponholz C, Heinemann SH, Pohnert G, et al: Labile heme impairs hepatic microcirculation and promotes hepatic injury. Arch Biochem Biophys. 672:1080752019. View Article : Google Scholar : PubMed/NCBI | |
Stefanson AL and Bakovic M: Falcarinol Is a potent inducer of heme oxygenase-1 and was more effective than sulforaphane in attenuating intestinal inflammation at diet-achievable doses. Oxid Med Cell Longev. 2018:31535272018. View Article : Google Scholar : PubMed/NCBI | |
Yoon SJ, Kim SJ and Lee SM: Overexpression of HO-1 contributes to sepsis-induced immunosuppression by modulating the Th1/Th2 balance and regulatory T-cell function. J Infect Dis. 215:1608–1618. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puentes-Pardo JD, Moreno-SanJuan S, Carazo Á and León J: Heme oxygenase-1 in gastrointestinal tract health and disease. Antioxidants (Basel). 9:12142020. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Mendívil C, Luengo E, Trigo-Alonso P, García-Magro N, Negredo P and López MG: Protective role of microglial HO-1 blockade in aging: Implication of iron metabolism. Redox Biol. 38:1017892021. View Article : Google Scholar : PubMed/NCBI | |
Qiao B, Sugianto P, Fung E, Del-Castillo-Rueda A, Moran-Jimenez MJ, Ganz T and Nemeth E: Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab. 15:918–924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cross JH, Jarjou O, Mohammed NI, Gomez SR, Touray BJB, Kessler NJ, Prentice AM and Cerami C: Iron homeostasis in full-term, normal birthweight Gambian neonates over the first week of life. Sci Rep. 13:103492023. View Article : Google Scholar : PubMed/NCBI | |
Drakesmith H and Prentice AM: Hepcidin and the iron-infection axis. Science. 338:768–772. 2012. View Article : Google Scholar : PubMed/NCBI | |
Scindia Y, Wlazlo E, Leeds J, Loi V, Ledesma J, Cechova S, Ghias E and Swaminathan S: Protective role of hepcidin in polymicrobial sepsis and acute kidney injury. Front Pharmacol. 10:6152019. View Article : Google Scholar : PubMed/NCBI | |
Deng Q, Yang S, Sun L, Dong K, Li Y, Wu S and Huang R: Salmonella effector SpvB aggravates dysregulation of systemic iron metabolism via modulating the hepcidin-ferroportin axis. Gut Microbes. 13:1–18. 2021. View Article : Google Scholar | |
Czempik PF and Wiórek A: Iron deficiency in sepsis patients based on reticulocyte hemoglobin and hepcidin concentration: A prospective cohort study. Arch Med Sci. 19:805–809. 2023. View Article : Google Scholar : PubMed/NCBI | |
Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L and Sun S: Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 78:721–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, Sun X, Li H, Zhang X, Yin S and Tan H: NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 34:1015232020. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Liao J, Hu G, Yan L, Su X, Ye J, Zhang C, Tian T, Wang H and Wang Y: Corilagin alleviates LPS-induced sepsis through inhibiting pyroptosis via targeting TIR domain of MyD88 and binding CARD of ASC in macrophages. Biochem Pharmacol. 1158062023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Dai S, Ye B, Zhong L, Chen Y, Hong G, Zhao G, Su L and Lu Z: GSDMD mediates LPS-induced septic myocardial dysfunction by regulating ROS-dependent NLRP3 inflammasome activation. Front Cell Dev Biol. 9:7794322021. View Article : Google Scholar : PubMed/NCBI | |
Meng L, Gu T, Wang J, Zhang H and Nan C: Knockdown of PHLDA1 alleviates sepsis-induced acute lung injury by downregulating NLRP3 inflammasome activation. Allergol Immunopathol (Madr). 51:41–47. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li W, Shen X, Feng S, Liu Y, Zhao H, Zhou G, Sang M, Sun X, Jiao R and Liu F: BRD4 inhibition by JQ1 protects against LPS-induced cardiac dysfunction by inhibiting activation of NLRP3 inflammasomes. Mol Biol Rep. 49:8197–8207. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Zheng Z, Zhang P, Xu Y, Zhang J, Peng S, Liu J, Pan W, Yin Z, Xu S, et al: IL-30 protects against sepsis-induced myocardial dysfunction by inhibiting pro-inflammatory macrophage polarization and pyroptosis. iScience. 26:1075442023. View Article : Google Scholar : PubMed/NCBI | |
Nong Y, Wei X and Yu D: Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis. 11:e8602023. View Article : Google Scholar : PubMed/NCBI | |
Lima MR and Silva D: Septic cardiomyopathy: A narrative review. Rev Port Cardiol. 42:471–481. 2023.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI | |
Nadamuni M, Venable AH and Huen SC: When a calorie isn't just a calorie: A revised look at nutrition in critically ill patients with sepsis and acute kidney injury. Curr Opin Nephrol Hypertens. 31:358–366. 2022. View Article : Google Scholar : PubMed/NCBI | |
Costa NA, Pereira AG, Sugizaki CSA, Vieira NM, Garcia LR, de Paiva SAR, Zornoff LAM, Azevedo PS, Polegato BF and Minicucci MF: Insights into thiamine supplementation in patients with septic shock. Front Med (Lausanne). 8:8051992022. View Article : Google Scholar : PubMed/NCBI | |
Huo L, Liu C, Yuan Y, Liu X and Cao Q: Pharmacological inhibition of ferroptosis as a therapeutic target for sepsis-associated organ damage. Eur J Med Chem. 257:1154382023. View Article : Google Scholar : PubMed/NCBI | |
Zhou P, Zhang S, Wang M and Zhou J: The induction mechanism of ferroptosis, necroptosis, and pyroptosis in inflammatory bowel disease, colorectal cancer, and intestinal injury. Biomolecules. 13:8202023. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Lan Y, Wu J and Zhu K: Sepsis-induced acute lung injury is alleviated by small molecules from dietary plants via pyroptosis modulation. J Agric Food Chem. 71:12153–12166. 2023. View Article : Google Scholar : PubMed/NCBI | |
Perveen I, Bukhari B, Najeeb M, Nazir S, Faridi TA, Farooq M, Ahmad QU, Abusalah MAHA, ALjaraedah TY, Alraei WY, et al: Hydrogen therapy and its future prospects for ameliorating COVID-19: Clinical applications, efficacy, and modality. Biomedicines. 11:18922023. View Article : Google Scholar : PubMed/NCBI | |
Expert Panel on Urological Imaging, . Smith AD, Nikolaidis P, Khatri G, Chong ST, De Leon AD, Ganeshan D, Gore JL, Gupta RT, Kwun R, et al: ACR appropriateness criteria® acute pyelonephritis: 2022 Update. J Am Coll Radiol. 19((11S)): S224–S239. 2022. View Article : Google Scholar : PubMed/NCBI | |
Diaconescu B, Uranues S, Fingerhut A, Vartic M, Zago M, Kurihara H, Latifi R, Popa D, Leppäniemi A, Tilsed J, et al: The bucharest ESTES consensus statement on peritonitis. Eur J Trauma Emerg Surg. 46:1005–1023. 2020. View Article : Google Scholar : PubMed/NCBI | |
Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, Machado FR, Mcintyre L, Ostermann M, Prescott HC, et al: Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 47:1181–1247. 2021. View Article : Google Scholar : PubMed/NCBI | |
Annane D, Pastores SM, Rochwerg B, Arlt W, Balk RA, Beishuizen A, Briegel J, Carcillo J, Christ-Crain M, Cooper MS, et al: Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part I): Society of critical care medicine (SCCM) and European society of intensive care medicine (ESICM) 2017. Intensive Care Med. 43:1751–1763. 2017. View Article : Google Scholar : PubMed/NCBI | |
Marik PE, Pastores SM, Annane D, Meduri GU, Sprung CL, Arlt W, Keh D, Briegel J, Beishuizen A, Dimopoulou I, et al: Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: Consensus statements from an international task force by the American college of critical care medicine. Crit Care Med. 36:1937–1949. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhong G, Han Y, Zhu Q, Xu M, Chang X, Chen M, Men L, Zhang Q and Wang L: The effects of Xuebijing injection combined with ulinastatin as adjunctive therapy on sepsis: An overview of systematic review and meta-analysis. Medicine (Baltimore). 101:e311962022. View Article : Google Scholar : PubMed/NCBI | |
Xiaoxia Q, Cheng C, Minjian W, Huilin C, Zhen L, Yuedong Y and Xingyu Z: Effect of integrative medicines on 28-day mortality from sepsis: A systematic review and network meta-analysis. Eur Rev Med Pharmacol Sci. 26:664–677. 2022.PubMed/NCBI |