Aryl hydrocarbon receptor: An emerging player in breast cancer pathogenesis and its potential as a drug target (Review)
- Authors:
- Cong Chen
- Zhiying Wang
- Zhihong Liao
- Yuanqi Zhang
- Wei Lei
- Xiaorong Shui
-
Affiliations: Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China, Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China - Published online on: November 21, 2023 https://doi.org/10.3892/mmr.2023.13134
- Article Number: 11
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Verrill M: Metastatic disease of the breast and local recurrence. Surgery (Oxford). 37:181–185. 2019. View Article : Google Scholar | |
Flatley MJ and Dodwell DJ: Adjuvant treatment for breast cancer. Surgery (Oxford). 34:43–46. 2016. View Article : Google Scholar | |
Burstein HJ, Curigliano G, Thürlimann B, Weber WP, Poortmans P, Regan MM, Senn HJ, Winer EP and Gnant M; Panelists of the St Gallen Consensus Conference, : Customizing local and systemic therapies for women with early breast cancer: The St. Gallen international consensus guidelines for treatment of early breast cancer 2021. Ann Oncol. 32:1216–1235. 2021. View Article : Google Scholar : PubMed/NCBI | |
Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pondé NF, Zardavas D and Piccart M: Progress in adjuvant systemic therapy for breast cancer. Nat Rev Clin Oncol. 16:27–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
Poland A, Glover E and Kende AS: Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. J Biol Chem. 251:4936–4946. 1976. View Article : Google Scholar : PubMed/NCBI | |
Kung T, Murphy KA and White LA: The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochem Pharmacol. 77:536–546. 2009. View Article : Google Scholar : PubMed/NCBI | |
Murray IA, Patterson AD and Perdew GH: Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat Rev Cancer. 14:801–814. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bersten DC, Sullivan AE, Peet DJ and Whitelaw ML: bHLH-PAS proteins in cancer. Nat Rev Cancer. 13:827–841. 2013. View Article : Google Scholar : PubMed/NCBI | |
Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, et al: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI | |
Denison MS and Nagy SR: Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 43:309–334. 2003. View Article : Google Scholar : PubMed/NCBI | |
Baker JR, Sakoff JA and McCluskey A: The aryl hydrocarbon receptor (AhR) as a breast cancer drug target. Med Res Rev. 40:972–1001. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rothhammer V and Quintana FJ: The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 19:184–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stockinger B, Di Meglio P, Gialitakis M and Duarte JH: The aryl hydrocarbon receptor: Multitasking in the immune system. Annu Rev Immunol. 32:403–432. 2014. View Article : Google Scholar : PubMed/NCBI | |
Denison MS, Soshilov AA, He G, DeGroot DE and Zhao B: Exactly the same but different: Promiscuity and diversity in the molecular mechanisms of action of the aryl hydrocarbon (dioxin) receptor. Toxicol Sci. 124:1–22. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mimura J, Ema M, Sogawa K and Fujii-Kuriyama Y: Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev. 13:20–25. 1999. View Article : Google Scholar : PubMed/NCBI | |
Whitlock JP Jr: Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol. 39:103–125. 1999. View Article : Google Scholar : PubMed/NCBI | |
Brauze D, Widerak M, Cwykiel J, Szyfter K and Baer-Dubowska W: The effect of aryl hydrocarbon receptor ligands on the expression of AhR, AhRR, ARNT, Hif1alpha, CYP1A1 and NQO1 genes in rat liver. Toxicol Lett. 167:212–220. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Sorrentino C, Denison MS, Kolaja K and Fielden MR: Induction of cyp1a1 is a nonspecific biomarker of aryl hydrocarbon receptor activation: Results of large scale screening of pharmaceuticals and toxicants in vivo and in vitro. Mol Pharmacol. 71:1475–1486. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Xie C, Wang Y, Luo Y, Yagai T, Sun D, Qin X, Krausz KW and Gonzalez FJ: The antiandrogen flutamide is a novel aryl hydrocarbon receptor ligand that disrupts bile acid homeostasis in mice through induction of Abcc4. Biochem Pharmacol. 119:93–104. 2016. View Article : Google Scholar : PubMed/NCBI | |
Swedenborg E and Pongratz I: AhR and ARNT modulate ER signaling. Toxicology. 268:132–138. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tarnow P, Tralau T and Luch A: Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol. 15:219–229. 2019. View Article : Google Scholar : PubMed/NCBI | |
Göttel M, Le Corre L, Dumont C, Schrenk D and Chagnon MC: Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Rep. 1:1029–1036. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Kim HJ, Kim SK, Barouki R, Cho CH, Khanna KK, Rosen EM and Bae I: BRCA1 modulates xenobiotic stress-inducible gene expression by interacting with ARNT in human breast cancer cells. J Biol Chem. 281:14654–14662. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tian Y, Rabson AB and Gallo MA: Ah receptor and NF-kappaB interactions: Mechanisms and physiological implications. Chem Biol Interact. 141:97–115. 2002. View Article : Google Scholar : PubMed/NCBI | |
Marshall NB and Kerkvliet NI: Dioxin and immune regulation: Emerging role of aryl hydrocarbon receptor in the generation of regulatory T cells. Ann N Y Acad Sci. 1183:25–37. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gutiérrez-Vázquez C and Quintana FJ: Regulation of the immune response by the Aryl hydrocarbon receptor. Immunity. 48:19–33. 2018. View Article : Google Scholar : PubMed/NCBI | |
Esser C and Rannug A: The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev. 67:259–279. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Wada T, Febbraio M, He J, Matsubara T, Lee MJ, Gonzalez FJ and Xie W: A novel role for the dioxin receptor in fatty acid metabolism and hepatic steatosis. Gastroenterology. 139:653–663. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lahvis GP, Lindell SL, Thomas RS, McCuskey RS, Murphy C, Glover E, Bentz M, Southard J and Bradfield CA: Portosystemic shunting and persistent fetal vascular structures in aryl hydrocarbon receptor-deficient mice. Proc Natl Acad Sci USA. 97:10442–10447. 2000. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Shui X, He Y, Xue Y, Li J, Li G, Lei W and Chen C: AhR expression and polymorphisms are associated with risk of coronary arterial disease in Chinese population. Sci Rep. 5:80222015. View Article : Google Scholar : PubMed/NCBI | |
Neavin DR, Liu D, Ray B and Weinshilboum RM: The role of the Aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases. Int J Mol Sci. 19:38512018. View Article : Google Scholar : PubMed/NCBI | |
Stockinger B, Shah K and Wincent E: AHR in the intestinal microenvironment: Safeguarding barrier function. Nat Rev Gastroenterol Hepatol. 18:559–570. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bock KW: Aryl hydrocarbon or dioxin receptor: Biologic and toxic responses. Rev Physiol Biochem Pharmacol. 125:1–42. 1994.PubMed/NCBI | |
Bradshaw TD and Bell DR: Relevance of the aryl hydrocarbon receptor (AhR) for clinical toxicology. Clin Toxicol (Phila). 47:632–642. 2009. View Article : Google Scholar : PubMed/NCBI | |
Knerr S and Schrenk D: Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Mol Nutr Food Res. 50:897–907. 2006. View Article : Google Scholar : PubMed/NCBI | |
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S and Fernández-Salguero PM: The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther. 185:50–63. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stanford EA, Wang Z, Novikov O, Mulas F, Landesman-Bollag E, Monti S, Smith BW, Seldin DC, Murphy GJ and Sherr DH: The role of the aryl hydrocarbon receptor in the development of cells with the molecular and functional characteristics of cancer stem-like cells. BMC Biol. 14:202016. View Article : Google Scholar : PubMed/NCBI | |
Stanford EA, Ramirez-Cardenas A, Wang Z, Novikov O, Alamoud K, Koutrakis P, Mizgerd JP, Genco CA, Kukuruzinska M, Monti S, et al: Role for the Aryl hydrocarbon receptor and diverse ligands in oral squamous cell carcinoma migration and tumorigenesis. Mol Cancer Res. 14:696–706. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Wu X, Zhang F, Han L, Bao G, He X and Xu Z: AhR expression is increased in hepatocellular carcinoma. J Mol Histol. 44:455–461. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang JT, Chang H, Chen PH, Lin SL and Lin P: Requirement of aryl hydrocarbon receptor overexpression for CYP1B1 up-regulation and cell growth in human lung adenocarcinomas. Clin Cancer Res. 13:38–45. 2007. View Article : Google Scholar : PubMed/NCBI | |
Koliopanos A, Kleeff J, Xiao Y, Safe S, Zimmermann A, Büchler MW and Friess H: Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. Oncogene. 21:6059–6070. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guarnieri T: Aryl hydrocarbon receptor connects inflammation to breast cancer. Int J Mol Sci. 21:52642020. View Article : Google Scholar : PubMed/NCBI | |
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M and Coumoul X: Adverse outcome pathway from activation of the AhR to breast cancer-related death. Environ Int. 165:1073232022. View Article : Google Scholar : PubMed/NCBI | |
Narasimhan S, Stanford Zulick E, Novikov O, Parks AJ, Schlezinger JJ, Wang Z, Laroche F, Feng H, Mulas F, Monti S and Sherr DH: Towards resolving the pro- and anti-tumor effects of the Aryl hydrocarbon receptor. Int J Mol Sci. 19:13882018. View Article : Google Scholar : PubMed/NCBI | |
Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Loibl S, Poortmans P, Morrow M, Denkert C and Curigliano G: Breast cancer. Lancet. 397:1750–1769. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Quan F, Xu J, Zhang Y, Xie Y, Zhang J, Lan Y, Yuan H, Zhang H, Cheng S, et al: Breast cancer prognosis signature: Linking risk stratification to disease subtypes. Brief Bioinform. 20:2130–2140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Eroles P, Bosch A, Pérez-Fidalgo JA and Lluch A: Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat Rev. 38:698–707. 2012. View Article : Google Scholar : PubMed/NCBI | |
Loibl S and Gianni L: HER2-positive breast cancer. Lancet. 389:2415–2429. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel HK and Bihani T: Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 186:1–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Goodwin PJ: Extended aromatase inhibitors in hormone-receptor-positive breast cancer. N Engl J Med. 385:462–463. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goel S, Bergholz JS and Zhao JJ: Targeting CDK4 and CDK6 in cancer. Nat Rev Cancer. 22:356–372. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hushka LJ, Williams JS and Greenlee WF: Characterization of 2,3,7,8-tetrachlorodibenzofuran-dependent suppression and AH receptor pathway gene expression in the developing mouse mammary gland. Toxicol Appl Pharmacol. 152:200–210. 1998. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell EF, Koch DC, Bisson WH, Jang HS and Kolluri SK: The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis. 5:e10382014. View Article : Google Scholar : PubMed/NCBI | |
Romagnolo DF, Papoutsis AJ, Laukaitis C and Selmin OI: Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer. 15:10262015. View Article : Google Scholar : PubMed/NCBI | |
Mohamed HT, Gadalla R, El-Husseiny N, Hassan H, Wang Z, Ibrahim SA, El-Shinawi M, Sherr DH and Mohamed MM: Inflammatory breast cancer: Activation of the aryl hydrocarbon receptor and its target CYP1B1 correlates closely with Wnt5a/b-β-catenin signalling, the stem cell phenotype and disease progression. J Adv Res. 16:75–86. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jeschke U, Zhang X, Kuhn C, Jalaguier S, Colinge J, Pfender K, Mayr D, Ditsch N, Harbeck N, Mahner S, et al: The prognostic impact of the Aryl hydrocarbon receptor (AhR) in primary breast cancer depends on the lymph node status. Int J Mol Sci. 20:10162019. View Article : Google Scholar : PubMed/NCBI | |
Vacher S, Castagnet P, Chemlali W, Lallemand F, Meseure D, Pocard M, Bieche I and Perrot-Applanat M: High AHR expression in breast tumors correlates with expression of genes from several signaling pathways namely inflammation and endogenous tryptophan metabolism. PLoS One. 13:e01906192018. View Article : Google Scholar : PubMed/NCBI | |
Tryggvadottir H, Sandén E, Björner S, Bressan A, Ygland Rödström M, Khazaei S, Edwards DP, Nodin B, Jirström K, Isaksson K, et al: The prognostic impact of intratumoral Aryl hydrocarbon receptor in primary breast cancer depends on the type of endocrine therapy: A population-based cohort study. Front Oncol. 11:6427682021. View Article : Google Scholar : PubMed/NCBI | |
Goode G, Pratap S and Eltom SE: Depletion of the aryl hydrocarbon receptor in MDA-MB-231 human breast cancer cells altered the expression of genes in key regulatory pathways of cancer. PLoS One. 9:e1001032014. View Article : Google Scholar : PubMed/NCBI | |
Goode GD, Ballard BR, Manning HC, Freeman ML, Kang Y and Eltom SE: Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line. Int J Cancer. 133:2769–2780. 2013. View Article : Google Scholar : PubMed/NCBI | |
Koual M, Tomkiewicz C, Cano-Sancho G, Antignac JP, Bats AS and Coumoul X: Environmental chemicals, breast cancer progression and drug resistance. Environ Health. 19:1172020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Qin HZ, Song Q, Wu XD and Zhu JH: Lack of association between the aryl hydrocarbon receptor rs2066853 polymorphism and breast cancer: A meta-analysis on Ahr polymorphism and breast cancer. Genet Mol Res. 14:16162–16168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ali S and Coombes RC: Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2:101–112. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Huangyang P, Wang Y, Xue L, Devericks E, Nguyen HG, Yu X, Oses-Prieto JA, Burlingame AL, Miglani S, et al: ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance. Cell. 184:5215–5229.e17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA and Greene GL: The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell. 95:927–937. 1998. View Article : Google Scholar : PubMed/NCBI | |
Metcalfe C, Friedman LS and Hager JH: Hormone-targeted therapy and resistance. Annu Rev Cancer Biol. 2:291–312. 2018. View Article : Google Scholar | |
Safe S and Wormke M: Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol. 16:807–816. 2003. View Article : Google Scholar : PubMed/NCBI | |
Niwa A, Kumaki K, Nebert DW and Poland AP: Genetic expression of aryl hydrocarbon hydroxylase activity in the mouse. Distinction between the ‘responsive’ homozygote and heterozygote at the Ah locus. Arch Biochem Biophys. 166:559–564. 1975. View Article : Google Scholar : PubMed/NCBI | |
Hankinson O: Single-step selection of clones of a mouse hepatoma line deficient in aryl hydrocarbon hydroxylase. Proc Natl Acad Sci USA. 76:373–376. 1979. View Article : Google Scholar : PubMed/NCBI | |
Stark K, Burger A, Wu J, Shelton P, Polin L and Li J: Reactivation of estrogen receptor α by vorinostat sensitizes mesenchymal-like triple-negative breast cancer to aminoflavone, a ligand of the aryl hydrocarbon receptor. PLoS One. 8:e745252013. View Article : Google Scholar : PubMed/NCBI | |
Go RE, Hwang KA and Choi KC: Cytochrome P450 1 family and cancers. J Steroid Biochem Mol Biol. 147:24–30. 2015. View Article : Google Scholar : PubMed/NCBI | |
Luzzani GA, Callero MA, Kuruppu AI, Trapani V, Flumian C, Todaro L, Bradshaw TD and Loaiza Perez AI: In vitro antitumor effects of AHR ligands aminoflavone (AFP 464) and benzothiazole (5F 203) in human renal carcinoma cells. J Cell Biochem. 118:4526–4535. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brunnberg S, Pettersson K, Rydin E, Matthews J, Hanberg A and Pongratz I: The basic helix-loop-helix-PAS protein ARNT functions as a potent coactivator of estrogen receptor-dependent transcription. Proc Natl Acad Sci USA. 100:6517–6522. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, et al: Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature. 423:545–550. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kociba RJ, Keyes DG, Beyer JE, Carreon RM, Wade CE, Dittenber DA, Kalnins RP, Frauson LE, Park CN, Barnard SD, et al: Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol. 46:279–303. 1978. View Article : Google Scholar : PubMed/NCBI | |
Low Dog T: Menopause: A review of botanical dietary supplements. Am J Med. 118 (Suppl 12B):S98–S108. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gong P, Madak-Erdogan Z, Flaws JA, Shapiro DJ, Katzenellenbogen JA and Katzenellenbogen BS: Estrogen receptor-alpha and aryl hydrocarbon receptor involvement in the actions of botanical estrogens in target cells. Mol Cell Endocrinol. 437:190–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moynahan ME: The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene. 21:8994–9007. 2002. View Article : Google Scholar : PubMed/NCBI | |
Baek HJ, Kim SE, Choi EK, Kim JK, Shin DH, Park EJ, Kim TH, Kim JY, Kim KG, Deng CX and Kim SS: Inhibition of estrogen signaling reduces the incidence of BRCA1-associated mammary tumor formation. Int J Biol Sci. 14:1755–1768. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang L and Di LJ: BRCA1 and estrogen/estrogen receptor in breast cancer: Where they interact? Int J Biol Sci. 10:566–575. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Kim HJ, Cho CH, Hu Y, Li R and Bae I: BRCA1 transcriptional activity is enhanced by interactions between its AD1 domain and AhR. Cancer Chemother Pharmacol. 62:965–975. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tapia T, Smalley SV, Kohen P, Muñoz A, Solis LM, Corvalan A, Faundez P, Devoto L, Camus M, Alvarez M and Carvallo P: Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors. Epigenetics. 3:157–163. 2008. View Article : Google Scholar : PubMed/NCBI | |
Papoutsis AJ, Selmin OI, Borg JL and Romagnolo DF: Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: Preventive effects of resveratrol. Mol Carcinog. 54:261–269. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wormke M, Stoner M, Saville B, Walker K, Abdelrahim M, Burghardt R and Safe S: The aryl hydrocarbon receptor mediates degradation of estrogen receptor alpha through activation of proteasomes. Mol Cell Biol. 23:1843–1855. 2003. View Article : Google Scholar : PubMed/NCBI | |
Crimini E, Repetto M, Aftimos P, Botticelli A, Marchetti P and Curigliano G: Precision medicine in breast cancer: From clinical trials to clinical practice. Cancer Treat Rev. 98:1022232021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Lei P, Liu X, Li X, Walker K, Kotha L, Rowlands C and Safe S: The aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. Endocr Relat Cancer. 16:835–844. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Kim K, Jin UH, Pfent C, Cao H, Amendt B, Liu X, Wilson-Robles H and Safe S: Aryl hydrocarbon receptor agonists induce microRNA-335 expression and inhibit lung metastasis of estrogen receptor negative breast cancer cells. Mol Cancer Ther. 11:108–118. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanieh H: Aryl hydrocarbon receptor-microRNA-212/132 axis in human breast cancer suppresses metastasis by targeting SOX4. Mol Cancer. 14:1722015. View Article : Google Scholar : PubMed/NCBI | |
Hall JM, Barhoover MA, Kazmin D, McDonnell DP, Greenlee WF and Thomas RS: Activation of the aryl-hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Mol Endocrinol. 24:359–369. 2010. View Article : Google Scholar : PubMed/NCBI | |
Barhoover MA, Hall JM, Greenlee WF and Thomas RS: Aryl hydrocarbon receptor regulates cell cycle progression in human breast cancer cells via a functional interaction with cyclin-dependent kinase 4. Mol Pharmacol. 77:195–201. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Wyrick KL, Meadows GG, Wills TB and Vorderstrasse BA: Activation of the aryl hydrocarbon receptor by TCDD inhibits mammary tumor metastasis in a syngeneic mouse model of breast cancer. Toxicol Sci. 124:291–298. 2011. View Article : Google Scholar : PubMed/NCBI | |
Safe S and Zhang L: The role of the Aryl hydrocarbon receptor (AhR) and its ligands in breast cancer. Cancers (Basel). 14:55742022. View Article : Google Scholar : PubMed/NCBI | |
Ho JN, Jun W, Choue R and Lee J: I3C and ICZ inhibit migration by suppressing the EMT process and FAK expression in breast cancer cells. Mol Med Rep. 7:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nguyen CH, Brenner S, Huttary N, Atanasov AG, Dirsch VM, Chatuphonprasert W, Holzner S, Stadler S, Riha J, Krieger S, et al: AHR/CYP1A1 interplay triggers lymphatic barrier breaching in breast cancer spheroids by inducing 12(S)-HETE synthesis. Hum Mol Genet. 25:5006–5016. 2016.PubMed/NCBI | |
Yerushalmi R, Bargil S, Ber Y, Ozlavo R, Sivan T, Rapson Y, Pomerantz A, Tsoref D, Sharon E, Caspi O, et al: 3,3-Diindolylmethane (DIM): A nutritional intervention and its impact on breast density in healthy BRCA carriers. A prospective clinical trial. Carcinogenesis. 41:1395–1401. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mobini K, Tamaddon G, Fardid R, Keshavarzi M and Mohammadi-Bardbori A: Aryl hydrocarbon-estrogen alpha receptor-dependent expression of miR-206, miR-27b, and miR-133a suppress cell proliferation and migration in MCF-7 cells. J Biochem Mol Toxicol. 33:e223042019. View Article : Google Scholar : PubMed/NCBI | |
Piwarski SA, Thompson C, Chaudhry AR, Denvir J, Primerano DA, Fan J and Salisbury TB: The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells. Biochem Pharmacol. 174:1138452020. View Article : Google Scholar : PubMed/NCBI | |
Sári Z, Mikó E, Kovács T, Boratkó A, Ujlaki G, Jankó L, Kiss B, Uray K and Bai P: Indoxylsulfate, a metabolite of the microbiome, has cytostatic effects in breast cancer via activation of AHR and PXR receptors and induction of oxidative stress. Cancers (Basel). 12:29152020. View Article : Google Scholar : PubMed/NCBI | |
Sári Z, Mikó E, Kovács T, Jankó L, Csonka T, Lente G, Sebő É, Tóth J, Tóth D, Árkosy P, et al: Indolepropionic acid, a metabolite of the microbiome, has cytostatic properties in breast cancer by activating AHR and PXR receptors and inducing oxidative stress. Cancers (Basel). 12:24112020. View Article : Google Scholar : PubMed/NCBI | |
Safe S, Jin UH, Park H, Chapkin RS and Jayaraman A: Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int J Mol Sci. 21:66542020. View Article : Google Scholar : PubMed/NCBI | |
Akama T, Ishida H, Shida Y, Kimura U, Gomi K, Saito H, Fuse E, Kobayashi S, Yoda N and Kasai M: Design and synthesis of potent antitumor 5,4′-diaminoflavone derivatives based on metabolic considerations. J Med Chem. 40:1894–1900. 1997. View Article : Google Scholar : PubMed/NCBI | |
Akama T, Shida Y, Sugaya T, Ishida H, Gomi K and Kasai M: Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. J Med Chem. 39:3461–3469. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kenz S, Haas CS, Werth SC, Bohnet S and Brabant G: High sensitivity to tolvaptan in paraneoplastic syndrome of inappropriate ADH secretion (SIADH). Ann Oncol. 22:26962011. View Article : Google Scholar : PubMed/NCBI | |
Kuffel MJ, Schroeder JC, Pobst LJ, Naylor S, Reid JM, Kaufmann SH and Ames MM: Activation of the antitumor agent aminoflavone (NSC 686288) is mediated by induction of tumor cell cytochrome P450 1A1/1A2. Mol Pharmacol. 62:143–153. 2002. View Article : Google Scholar : PubMed/NCBI | |
Loaiza-Perez AI, Kenney S, Boswell J, Hollingshead M, Alley MC, Hose C, Ciolino HP, Yeh GC, Trepel JB, Vistica DT and Sausville EA: Aryl hydrocarbon receptor activation of an antitumor aminoflavone: Basis of selective toxicity for MCF-7 breast tumor cells. Mol Cancer Ther. 3:715–725. 2004. View Article : Google Scholar : PubMed/NCBI | |
Loaiza-Perez AI, Kenney S, Boswell J, Hollingshead M, Hose C, Linehan WM, Worrell R, Rubinstein L, Sausville EA and Vistica DT: Sensitivity of renal cell carcinoma to aminoflavone: role of CYP1A1. J Urol. 171:1688–1697. 2004. View Article : Google Scholar : PubMed/NCBI | |
Meng LH, Shankavaram U, Chen C, Agama K, Fu HQ, Gonzalez FJ, Weinstein J and Pommier Y: Activation of aminoflavone (NSC 686288) by a sulfotransferase is required for the antiproliferative effect of the drug and for induction of histone gamma-H2AX. Cancer Res. 66:9656–9664. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mavingire N, Campbell P, Liu T, Wooten J, Khan S, Chen X, Matthews J, Wang C and Brantley E: Aminoflavone upregulates putative tumor suppressor miR-125b-2-3p to inhibit luminal A breast cancer stem cell-like properties. Precis Clin Med. 5:pbac0082022. View Article : Google Scholar : PubMed/NCBI | |
Campbell PS, Mavingire N, Khan S, Rowland LK, Wooten JV, Opoku-Agyeman A, Guevara A, Soto U, Cavalli F, Loaiza-Pérez AI, et al: AhR ligand aminoflavone suppresses α6-integrin-Src-Akt signaling to attenuate tamoxifen resistance in breast cancer cells. J Cell Physiol. 234:108–121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brantley E, Callero MA, Berardi DE, Campbell P, Rowland L, Zylstra D, Amis L, Yee M, Simian M, Todaro L, et al: AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity. Cancer Lett. 376:53–61. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hu T, Zhou R, Zhao Y and Wu G: Integrin α6/Akt/Erk signaling is essential for human breast cancer resistance to radiotherapy. Sci Rep. 6:333762016. View Article : Google Scholar : PubMed/NCBI | |
Zhao S, Kanno Y, Nakayama M, Makimura M, Ohara S and Inouye Y: Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Lett. 317:192–198. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xu CX, Bu Y, Bottum KM and Tischkau SA: Beta-naphthoflavone (DB06732) mediates estrogen receptor-positive breast cancer cell cycle arrest through AhR-dependent regulation of PI3K/AKT and MAPK/ERK signaling. Carcinogenesis. 35:703–713. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fukasawa K, Kagaya S, Maruyama S, Kuroiwa S, Masuda K, Kameyama Y, Satoh Y, Akatsu Y, Tomura A, Nishikawa K, et al: A novel compound, NK150460, exhibits selective antitumor activity against breast cancer cell lines through activation of aryl hydrocarbon receptor. Mol Cancer Ther. 14:343–354. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tarleton M, Gilbert J, Robertson MJ, McCluskey A and Sakoff JA: Library synthesis and cytotoxicity of a family of 2-phenylacrylonitriles and discovery of an estrogen dependent breast cancer lead compound†. Med Chem Commun. 2:31–37. 2011. View Article : Google Scholar | |
Gilbert J, De Iuliis GN, Tarleton M, McCluskey A and Sakoff JA: (Z)-2-(3,4-Dichlorophenyl)-3-(1 H-Pyrrol-2-yl)acrylonitrile exhibits selective antitumor activity in breast cancer cell lines via the aryl hydrocarbon receptor pathway. Mol Pharmacol. 93:168–177. 2018. View Article : Google Scholar : PubMed/NCBI | |
Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, Johnston SE, Vrcic A, Wong B, Khan M, et al: The drug repurposing Hub: A next-generation drug library and information resource. Nat Med. 23:405–408. 2017. View Article : Google Scholar : PubMed/NCBI | |
Quattrochi LC and Tukey RH: Nuclear uptake of the Ah (dioxin) receptor in response to omeprazole: Transcriptional activation of the human CYP1A1 gene. Mol Pharmacol. 43:504–508. 1993.PubMed/NCBI | |
Prud'homme GJ, Glinka Y, Toulina A, Ace O, Subramaniam V and Jothy S: Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS One. 5:e138312010. View Article : Google Scholar : PubMed/NCBI | |
Jin UH, Lee SO and Safe S: Aryl hydrocarbon receptor (AHR)-active pharmaceuticals are selective AHR modulators in MDA-MB-468 and BT474 breast cancer cells. J Pharmacol Exp Ther. 343:333–341. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cummings SR, Tice JA, Bauer S, Browner WS, Cuzick J, Ziv E, Vogel V, Shepherd J, Vachon C, Smith-Bindman R and Kerlikowske K: Prevention of breast cancer in postmenopausal women: Approaches to estimating and reducing risk. J Natl Cancer Inst. 101:384–398. 2009. View Article : Google Scholar : PubMed/NCBI | |
Moen MD and Keating GM: Raloxifene: A review of its use in the prevention of invasive breast cancer. Drugs. 68:2059–2083. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bevers TB: Raloxifene and the prevention of breast cancer. Expert Opin Pharmacother. 7:2301–2307. 2006. View Article : Google Scholar : PubMed/NCBI | |
Martino S, Cauley JA, Barrett-Connor E, Powles TJ, Mershon J, Disch D, Secrest RJ and Cummings SR; CORE Investigators, : Continuing outcomes relevant to Evista: Breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst. 96:1751–1761. 2004. View Article : Google Scholar : PubMed/NCBI | |
Clemens JA, Bennett DR, Black LJ and Jones CD: Effects of a new antiestrogen, keoxifene (LY156758), on growth of carcinogen-induced mammary tumors and on LH and prolactin levels. Life Sci. 32:2869–2875. 1983. View Article : Google Scholar : PubMed/NCBI | |
Kleinberg DL, Todd J and Babitsky G: Inhibition by estradiol of the lactogenic effect of prolactin in primate mammary tissue: Reversal by antiestrogens LY 156758 and tamoxifen. Proc Natl Acad Sci USA. 80:4144–4148. 1983. View Article : Google Scholar : PubMed/NCBI | |
Ning M, Zhou C, Weng J, Zhang S, Chen D, Yang C, Wang H, Ren J, Zhou L, Jin C and Wang MW: Biological activities of a novel selective oestrogen receptor modulator derived from raloxifene (Y134). Br J Pharmacol. 150:19–28. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jang HS, Pearce M, O'Donnell EF, Nguyen BD, Truong L, Mueller MJ, Bisson WH, Kerkvliet NI, Tanguay RL and Kolluri SK: Identification of a raloxifene analog that promotes AhR-mediated apoptosis in cancer cells. Biology (Basel). 6:412017.PubMed/NCBI | |
Hyder T, Marino CC, Ahmad S, Nasrazadani A and Brufsky AM: Aromatase inhibitor-associated musculoskeletal syndrome: Understanding mechanisms and management. Front Endocrinol (Lausanne). 12:7137002021. View Article : Google Scholar : PubMed/NCBI | |
Dzeletovic N, McGuire J, Daujat M, Tholander J, Ema M, Fujii-Kuriyama Y, Bergman J, Maurel P and Poellinger L: Regulation of dioxin receptor function by omeprazole. J Biol Chem. 272:12705–12713. 1997. View Article : Google Scholar : PubMed/NCBI | |
Jin UH, Kim SB and Safe S: Omeprazole inhibits pancreatic cancer cell invasion through a nongenomic Aryl hydrocarbon receptor pathway. Chem Res Toxicol. 28:907–918. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lesca P, Peryt B, Larrieu G, Alvinerie M, Galtier P, Daujat M, Maurel P and Hoogenboom L: Evidence for the ligand-independent activation of the AH receptor. Biochem Biophys Res Commun. 209:474–482. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jin UH, Lee SO, Pfent C and Safe S: The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer. 14:4982014. View Article : Google Scholar : PubMed/NCBI | |
Koda A, Nagai H, Watanabe S, Yanagihara Y and Sakamoto K: Inhibition of hypersensitivity reactions by a new drug, N(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′). J Allergy Clin. Immunol. 57:396–407. 1976. | |
Azuma H, Banno K and Yoshimura T: Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl) anthranilic acid (N-5′), a new anti-atopic agent. Br J Pharmacol. 58:483–488. 1976. View Article : Google Scholar : PubMed/NCBI | |
Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarti R, Subramaniam V, Abdalla S, Jothy S and Prud'homme GJ: Tranilast inhibits the growth and metastasis of mammary carcinoma. Anticancer Drugs. 20:334–345. 2009. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam V, Ace O, Prud'homme GJ and Jothy S: Tranilast treatment decreases cell growth, migration and inhibits colony formation of human breast cancer cells. Exp Mol Pathol. 90:116–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ciolino HP, MacDonald CJ, Memon OS, Bass SE and Yeh GC: Sulindac regulates the aryl hydrocarbon receptor-mediated expression of phase 1 metabolic enzymes in vivo and in vitro. Carcinogenesis. 27:1586–1592. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hahn ME: Aryl hydrocarbon receptors: Diversity and evolution. Chem Biol Interact. 141:131–160. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE and Sherr DH: A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem. 387:1175–1187. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vogel CFA, Lazennec G, Kado SY, Dahlem C, He Y, Castaneda A, Ishihara Y, Vogeley C, Rossi A, Haarmann-Stemmann T, et al: Targeting the Aryl hydrocarbon receptor signaling pathway in breast cancer development. Front Immunol. 12:6253462021. View Article : Google Scholar : PubMed/NCBI | |
Kolasa E, Houlbert N, Balaguer P and Fardel O: AhR- and NF-κB-dependent induction of interleukin-6 by co-exposure to the environmental contaminant benzanthracene and the cytokine tumor necrosis factor-α in human mammary MCF-7 cells. Chem Biol Interact. 203:391–400. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shan A, Leng L, Li J, Luo XM, Fan YJ, Yang Q, Xie QH, Chen YS, Ni CS, Guo LM, et al: TCDD-induced antagonism of MEHP-mediated migration and invasion partly involves aryl hydrocarbon receptor in MCF7 breast cancer cells. J Hazard Mater. 398:1228692020. View Article : Google Scholar : PubMed/NCBI | |
Bekki K, Vogel H, Li W, Ito T, Sweeney C, Haarmann-Stemmann T, Matsumura F and Vogel CF: The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pestic Biochem Physiol. 120:5–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pontillo C, Español A, Chiappini F, Miret N, Cocca C, Alvarez L, Kleiman de Pisarev D, Sales ME and Randi AS: Hexachlorobenzene promotes angiogenesis in vivo, in a breast cancer model and neovasculogenesis in vitro, in the human microvascular endothelial cell line HMEC-1. Toxicol Lett. 239:53–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vogel CFA, Li W, Wu D, Miller JK, Sweeney C, Lazennec G, Fujisawa Y and Matsumura F: Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys. 512:78–86. 2011. View Article : Google Scholar : PubMed/NCBI | |
Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A, et al: An Aryl hydrocarbon receptor-mediated amplification loop that enforces cell migration in ER-/PR-/Her2-human breast cancer cells. Mol Pharmacol. 90:674–688. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hsieh TH, Tsai CF, Hsu CY, Kuo PL, Lee JN, Chai CY, Wang SC and Tsai EM: Phthalates induce proliferation and invasiveness of estrogen receptor-negative breast cancer through the AhR/HDAC6/c-Myc signaling pathway. FASEB J. 26:778–787. 2012. View Article : Google Scholar : PubMed/NCBI | |
Miret N, Pontillo C, Ventura C, Carozzo A, Chiappini F, Kleiman de Pisarev D, Fernández N, Cocca C and Randi A: Hexachlorobenzene modulates the crosstalk between the aryl hydrocarbon receptor and transforming growth factor-β1 signaling, enhancing human breast cancer cell migration and invasion. Toxicology. 366–367. 20–31. 2016. | |
Pontillo CA, Rojas P, Chiappini F, Sequeira G, Cocca C, Crocci M, Colombo L, Lanari C, Kleiman de Pisarev D and Randi A: Action of hexachlorobenzene on tumor growth and metastasis in different experimental models. Toxicol Appl Pharmacol. 268:331–342. 2013. View Article : Google Scholar : PubMed/NCBI | |
Al-Dhfyan A, Alhoshani A and Korashy HM: Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-catenin and Akt activation. Mol Cancer. 16:142017. View Article : Google Scholar : PubMed/NCBI | |
Jung JW, Park SB, Lee SJ, Seo MS, Trosko JE and Kang KS: Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS One. 6:e280682011. View Article : Google Scholar : PubMed/NCBI | |
Malik DE, David RM and Gooderham NJ: Interleukin-6 selectively induces drug metabolism to potentiate the genotoxicity of dietary carcinogens in mammary cells. Arch Toxicol. 93:3005–3020. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zárate LV, Pontillo CA, Español A, Miret NV, Chiappini F, Cocca C, Álvarez L, de Pisarev DK, Sales ME and Randi AS: Angiogenesis signaling in breast cancer models is induced by hexachlorobenzene and chlorpyrifos, pesticide ligands of the aryl hydrocarbon receptor. Toxicol Appl Pharmacol. 401:1150932020. View Article : Google Scholar : PubMed/NCBI | |
Pontillo CA, Garcia MA, Peña D, Cocca C, Chiappini F, Alvarez L, Kleiman de Pisarev D and Randi AS: Activation of c-Src/HER1/STAT5b and HER1/ERK1/2 signaling pathways and cell migration by hexachlorobenzene in MDA-MB-231 human breast cancer cell line. Toxicol Sci. 120:284–296. 2011. View Article : Google Scholar : PubMed/NCBI | |
Castillo-Sanchez R, Villegas-Comonfort S, Galindo-Hernandez O, Gomez R and Salazar EP: Benzo-[a]-pyrene induces FAK activation and cell migration in MDA-MB-231 breast cancer cells. Cell Biol Toxicol. 29:303–319. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Xu Y, Ji W, Song L, Dai C and Zhan L: Effects of exposure to benzo[a]pyrene on metastasis of breast cancer are mediated through ROS-ERK-MMP9 axis signaling. Toxicol Lett. 234:201–210. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cirillo F, Lappano R, Bruno L, Rizzuti B, Grande F, Guzzi R, Briguori S, Miglietta AM, Nakajima M, Di Martino MT and Maggiolini M: AHR and GPER mediate the stimulatory effects induced by 3-methylcholanthrene in breast cancer cells and cancer-associated fibroblasts (CAFs). J Exp Clin Cancer Res. 38:3352019. View Article : Google Scholar : PubMed/NCBI | |
Yamashita N, Saito N, Zhao S, Terai K, Hiruta N, Park Y, Bujo H, Nemoto K and Kanno Y: Heregulin-induced cell migration is promoted by aryl hydrocarbon receptor in HER2-overexpressing breast cancer cells. Exp Cell Res. 366:34–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
D'Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, Nemkov TG, D'Alessandro A, Hansen KC and Richer JK: A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 75:4651–4664. 2015. View Article : Google Scholar : PubMed/NCBI | |
Parks AJ, Pollastri MP, Hahn ME, Stanford EA, Novikov O, Franks DG, Haigh SE, Narasimhan S, Ashton TD, Hopper TG, et al: In silico identification of an aryl hydrocarbon receptor antagonist with biological activity in vitro and in vivo. Mol Pharmacol. 86:593–608. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI | |
Peitzsch C, Tyutyunnykova A, Pantel K and Dubrovska A: Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Regan Anderson TM, Ma S, Perez Kerkvliet C, Peng Y, Helle TM, Krutilina RI, Raj GV, Cidlowski JA, Ostrander JH, Schwertfeger KL, et al: Taxol induces Brk-dependent prosurvival phenotypes in TNBC cells through an AhR/GR/HIF-driven signaling axis. Mol Cancer Res. 16:1761–1772. 2018. View Article : Google Scholar : PubMed/NCBI | |
Toomey DP, Murphy JF and Conlon KC: COX-2, VEGF and tumour angiogenesis. Surgeon. 7:174–180. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kirkpatrick K, Ogunkolade W, Elkak A, Bustin S, Jenkins P, Ghilchik M and Mokbel K: The mRNA expression of cyclo-oxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) in human breast cancer. Curr Med Res Opin. 18:237–241. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, et al: IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 117:3988–4002. 2007. View Article : Google Scholar : PubMed/NCBI | |
Baumgarten SC and Frasor J: Minireview: Inflammation: An instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol. 26:360–371. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sasser AK, Sullivan NJ, Studebaker AW, Hendey LF, Axel AE and Hall BM: Interleukin-6 is a potent growth factor for ER-alpha-positive human breast cancer. FASEB J. 21:3763–3770. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fouad TM, Barrera AMG, Reuben JM, Lucci A, Woodward WA, Stauder MC, Lim B, DeSnyder SM, Arun B, Gildy B, et al: Inflammatory breast cancer: A proposed conceptual shift in the UICC-AJCC TNM staging system. Lancet Oncol. 18:e228–e232. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Wang H, Ding X, Chen X and Shen K: A large-cohort retrospective study of metastatic patterns and prognostic outcomes between inflammatory and non-inflammatory breast cancer. Ther Adv Med Oncol. 12:17588359209326742020. View Article : Google Scholar : PubMed/NCBI | |
Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM and Sonenshein GE: Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Invest. 100:2952–2960. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kim DW, Sovak MA, Zanieski G, Nonet G, Romieu-Mourez R, Lau AW, Hafer LJ, Yaswen P, Stampfer M, Rogers AE, et al: Activation of NF-kappaB/Rel occurs early during neoplastic transformation of mammary cells. Carcinogenesis. 21:871–879. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kim DW, Gazourian L, Quadri SA, Romieu-Mourez R, Sherr DH and Sonenshein GE: The RelA NF-kappaB subunit and the aryl hydrocarbon receptor (AhR) cooperate to transactivate the c-myc promoter in mammary cells. Oncogene. 19:5498–5506. 2000. View Article : Google Scholar : PubMed/NCBI | |
Currier N, Solomon SE, Demicco EG, Chang DL, Farago M, Ying H, Dominguez I, Sonenshein GE, Cardiff RD, Xiao ZX, et al: Oncogenic signaling pathways activated in DMBA-induced mouse mammary tumors. Toxicol Pathol. 33:726–737. 2005. View Article : Google Scholar : PubMed/NCBI | |
Vyas D, Lopez-Hisijos N, Shah P, Deshpande KS, Basson MD, Vyas A and Chaturvedi LS: A second-generation proteasome inhibitor and doxorubicin modulates IL-6, pSTAT-3 and NF-kB activity in MDA-MB-231 breast cancer cells. J Nanosci Nanotechnol. 17:175–185. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sakamoto K, Wehde BL, Yoo KH, Kim T, Rajbhandari N, Shin HY, Triplett AA, Rädler PD, Schuler F, Villunger A, et al: Janus kinase 1 is essential for inflammatory cytokine signaling and mammary gland remodeling. Mol Cell Biol. 36:1673–1690. 2016. View Article : Google Scholar : PubMed/NCBI | |
Poland A and Knutson JC: 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Annu Rev Pharmacol Toxicol. 22:517–554. 1982. View Article : Google Scholar : PubMed/NCBI |