Albumin, an interesting and functionally diverse protein, varies from ‘native’ to ‘effective’ (Review)
- Authors:
- Nijin Wu
- Tiantian Liu
- Miaomiao Tian
- Chenxi Liu
- Shujun Ma
- Huiling Cao
- Hongjun Bian
- Le Wang
- Yuemin Feng
- Jianni Qi
-
Affiliations: Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China, Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, Shandong 250021, P.R. China - Published online on: December 13, 2023 https://doi.org/10.3892/mmr.2023.13147
- Article Number: 24
-
Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Trefts E, Gannon M and Wasserman DH: The liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI | |
Embade N and Millet O: Molecular determinants of chronic liver disease as studied by NMR-Metabolomics. Curr Top Med Chem. 17:2752–2766. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Tang R, Li B, Ma X, Schnabl B and Tilg H: Gut microbiome, liver immunology, and liver diseases. Cell Mol Immunol. 18:4–17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Bugianesi E, Wai-Sun Wong V, Yilmaz Y, George J, Fan J and Vos MB: Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology. 69:2672–2682. 2019. View Article : Google Scholar : PubMed/NCBI | |
Diehl AM: Alcoholic liver disease. Clin Liver Dis. 2:103–118. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H and Li Y: Macrophage Polarization and Its role in liver disease. Front Immunol. 12:8030372021. View Article : Google Scholar : PubMed/NCBI | |
Gilgenkrantz H, Mallat A, Moreau R and Lotersztajn S: Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol. 74:1442–1454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V and Jalan R: Albumin: Pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 58:1836–1846. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Araujo A, de Barros Lopes A, Rossi G, da Silva GV, Ananias P, Ness S and Alvares-da-Silva MR: Low-dose albumin in the treatment of spontaneous bacterial peritonitis: Should we change the standard treatment? Gut. 61:1371–1372. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fernandez J, Navasa M, Garcia-Pagan JC, G-Abraldes J, Jiménez W, Bosch J and Arroyo V: Effect of intravenous albumin on systemic and hepatic hemodynamics and vasoactive neurohormonal systems in patients with cirrhosis and spontaneous bacterial peritonitis. J Hepatol. 41:384–390. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nguyen-Tat M, Jager J, Rey JW, Nagel M, Labenz C, Wörns MA, Galle PR and Marquardt JU: Terlipressin and albumin combination treatment in patients with hepatorenal syndrome type 2. United European Gastroenterol J. 7:529–537. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wong F, Pappas SC, Curry MP, Reddy KR, Rubin RA, Porayko MK, Gonzalez SA, Mumtaz K, Lim N, Simonetto DA, et al: Terlipressin plus albumin for the treatment of type 1 Hepatorenal Syndrome. N Engl J Med. 384:818–828. 2021. View Article : Google Scholar : PubMed/NCBI | |
China L, Freemantle N, Forrest E, Kallis Y, Ryder SD, Wright G, Portal AJ, Becares Salles N, Gilroy DW and O'Brien A; ATTIRE Trial Investigators, : A Randomized Trial of Albumin Infusions in Hospitalized Patients with Cirrhosis. N Engl J Med. 384:808–817. 2021. View Article : Google Scholar : PubMed/NCBI | |
Caraceni P, Domenicali M, Tovoli A, Napoli L, Ricci CS, Tufoni M and Bernardi M: Clinical indications for the albumin use: Still a controversial issue. Eur J Intern Med. 24:721–728. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jalan R, Schnurr K, Mookerjee RP, Sen S, Cheshire L, Hodges S, Muravsky V, Williams R, Matthes G and Davies NA: Alterations in the functional capacity of albumin in patients with decompensated cirrhosis is associated with increased mortality. Hepatology. 50:555–564. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ge P, Yang H, Lu J, Liao W, Du S, Xu Y, Xu H, Zhao H, Lu X, Sang X, et al: Albumin binding function: The potential earliest indicator for liver function damage. Gastroenterol Res Pract. 2016:51207602016. View Article : Google Scholar : PubMed/NCBI | |
Das S, Maras JS, Hussain MS, Sharma S, David P, Sukriti S, Shasthry SM, Maiwall R, Trehanpati N, Singh TP and Sarin SK: Hyperoxidized albumin modulates neutrophils to induce oxidative stress and inflammation in severe alcoholic hepatitis. Hepatology. 65:631–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rothschild MA, Oratz M and Schreiber SS: Serum albumin. Hepatology. 8:385–401. 1988. View Article : Google Scholar : PubMed/NCBI | |
Caraceni P, O'Brien A and Gines P: Long-term albumin treatment in patients with cirrhosis and ascites. J Hepatol. 76:1306–1317. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bernardi M, Ricci CS and Zaccherini G: Role of human albumin in the management of complications of liver cirrhosis. J Clin Exp Hepatol. 4:302–311. 2014. View Article : Google Scholar : PubMed/NCBI | |
He XM and Carter DC: Atomic structure and chemistry of human serum albumin. Nature. 358:209–215. 1992. View Article : Google Scholar : PubMed/NCBI | |
Sugio S, Kashima A, Mochizuki S, Noda M and Kobayashi K: Crystal structure of human serum albumin at 2.5 A resolution. Protein Eng. 12:439–446. 1999. View Article : Google Scholar : PubMed/NCBI | |
Oettl K and Stauber RE: Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. Br J Pharmacol. 151:580–590. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wada Y, Takeda Y and Kuwahata M: Potential Role of Amino Acid/Protein Nutrition and Exercise in Serum Albumin Redox State. Nutrients. 10:172017. View Article : Google Scholar : PubMed/NCBI | |
Prinsen BH and de Sain-van der Velden MG: Albumin turnover: Experimental approach and its application in health and renal diseases. Clin Chim Acta. 347:1–14. 2004. View Article : Google Scholar : PubMed/NCBI | |
Strauss AW, Donohue AM, Bennett CD, Rodkey JA and Alberts AW: Rat liver preproalbumin: In vitro synthesis and partial amino acid sequence. Proc Natl Acad Sci USA. 74:1358–1362. 1977. View Article : Google Scholar : PubMed/NCBI | |
Soeters PB, Wolfe RR and Shenkin A: Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr. 43:181–193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun X and Kaysen GA: Albumin and transferrin synthesis are increased in H4 cells by serum from analbuminemic or nephrotic rats. Kidney Int. 45:1381–1387. 1994. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhou L, Zhang B, Dong P, Lin W, Wang H, Xu R and Ding H: Recombinant human growth hormone increases albumin and prolongs survival in patients with chronic liver failure: A pilot open, randomized, and controlled clinical trial. Dig Liver Dis. 40:554–559. 2008. View Article : Google Scholar : PubMed/NCBI | |
Castell JV, Gómez-Lechón MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R and Heinrich PC: Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett. 242:237–239. 1989. View Article : Google Scholar : PubMed/NCBI | |
Bernardi M, Angeli P, Claria J, Moreau R, Gines P, Jalan R, Caraceni P, Fernandez J, Gerbes AL, O'Brien AJ, et al: Albumin in decompensated cirrhosis: New concepts and perspectives. Gut. 69:1127–1138. 2020. View Article : Google Scholar : PubMed/NCBI | |
Merlot AM, Kalinowski DS and Richardson DR: Unraveling the mysteries of serum albumin-more than just a serum protein. Front Physiol. 5:2992014. View Article : Google Scholar : PubMed/NCBI | |
Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC and Anderson CL: The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 197:315–322. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pyzik M, Rath T, Kuo TT, Win S, Baker K, Hubbard JJ, Grenha R, Gandhi A, Krämer TD, Mezo AR, et al: Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc Natl Acad Sci USA. 114:E2862–E2871. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schnitzer JE: gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol. 262((1 Pt 2)): H246–H254. 1992.PubMed/NCBI | |
Schnitzer JE and Bravo J: High affinity binding, endocytosis, and degradation of conformationall y modified albumins. Potential role of gp30 and gp18 as novel scavenge r receptors. J Biol Chem. 268:7562–7570. 1993. View Article : Google Scholar : PubMed/NCBI | |
Johansson E, Nielsen AD, Demuth H, Wiberg C, Schjødt CB, Huang T, Chen J, Jensen S, Petersen J and Thygesen P: Identification of binding sites on human serum albumin for somapacitan, a long-acting growth hormone derivative. Biochemistry. 59:1410–1419. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schmidt MM, Townson SA, Andreucci AJ, King BM, Schirmer EB, Murillo AJ, Dombrowski C, Tisdale AW, Lowden PA, Masci AL, et al: Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure. 21:1966–1978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Leblanc Y, Berger M, Seifert A, Bihoreau N and Chevreux G: Human serum albumin presents isoform variants with altered neonatal Fc receptor interactions. Protein Sci. 28:1982–1992. 2019. View Article : Google Scholar : PubMed/NCBI | |
Baldassarre M, Naldi M, Zaccherini G, Bartoletti M, Antognoli A, Laggetta M, Gagliardi M, Tufoni M, Domenicali M, Waterstradt K, et al: Determination of effective albumin in patients with decompensated cirrhosis: Clinical and prognostic implications. Hepatology. 74:2058–2073. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Yin H, Liu M, Xu G, Zhou X, Ge P, Yang H and Mao Y: Impaired albumin function: A novel potential indicator for liver function damage? Ann Med. 51:333–344. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brioschi M, Gianazza E, Mallia A, Zoanni B, Altomare A, Martinez Fernandez A, Agostoni P, Aldini G and Banfi C: S-Thiolation targets albumin in heart failure. Antioxidants (Basel). 9:7632020. View Article : Google Scholar : PubMed/NCBI | |
Colombo G, Clerici M, Giustarini D, Rossi R, Milzani A and Dalle-Donne I: Redox albuminomics: Oxidized albumin in human diseases. Antioxid Redox Signal. 17:1515–1527. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roche M, Rondeau P, Singh NR, Tarnus E and Bourdon E: The antioxidant properties of serum albumin. FEBS Lett. 582:1783–1787. 2008. View Article : Google Scholar : PubMed/NCBI | |
Turell L, Botti H, Carballal S, Radi R and Alvarez B: Sulfenic acid-a key intermediate in albumin thiol oxidation. J Chromatogr B Analyt Technol Biomed Life Sci. 877:3384–3392. 2009. View Article : Google Scholar : PubMed/NCBI | |
Turell L, Radi R and Alvarez B: The thiol pool in human plasma: The central contribution of albumin to redox processes. Free Radic Biol Med. 65:244–253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Altomare A, Baron G, Brioschi M, Longoni M, Butti R, Valvassori E, Tremoli E, Carini M, Agostoni P, Vistoli G, et al: N-Acetyl-Cysteine Regenerates Albumin Cys34 by a thiol-disulfide breaking mechanism: An explanation of its extracellular antioxidant activity. Antioxidants (Basel). 9:3672020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Mao Z, Huang Y, Yan H, Yan Q, Hong J, Fan J and Yao J: Reductively modified albumin attenuates DSS-Induced mouse colitis through rebalancing systemic redox state. Redox Biol. 41:1018812021. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Grigoryan H, Edmands WBM, Dagnino S, Sinharay R, Cullinan P, Collins P, Chung KF, Barratt B, Kelly FJ, et al: Cys34 adductomes differ between patients with chronic lung or heart disease and healthy controls in Central London. Environ Sci Technol. 52:2307–2313. 2018. View Article : Google Scholar : PubMed/NCBI | |
Terawaki H, Yoshimura K, Hasegawa T, Matsuyama Y, Negawa T, Yamada K, Matsushima M, Nakayama M, Hosoya T and Era S: Oxidative stress is enhanced in correlation with renal dysfunction: Examination with the redox state of albumin. Kidney Int. 66:1988–1993. 2004. View Article : Google Scholar : PubMed/NCBI | |
Taverna M, Marie AL, Mira JP and Guidet B: Specific antioxidant properties of human serum albumin. Ann Intensive Care. 3:42013. View Article : Google Scholar : PubMed/NCBI | |
Stohs SJ and Bagchi D: Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 18:321–336. 1995. View Article : Google Scholar : PubMed/NCBI | |
Neuzil J and Stocker R: Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 331:281–284. 1993. View Article : Google Scholar : PubMed/NCBI | |
Carter DC and Ho JX: Structure of serum albumin. Adv Protein Chem. 45:153–203. 1994. View Article : Google Scholar : PubMed/NCBI | |
Alcaraz-Quiles J, Casulleras M, Oettl K, Titos E, Flores-Costa R, Duran-Güell M, López-Vicario C, Pavesi M, Stauber RE, Arroyo V and Clària J: Oxidized albumin triggers a cytokine storm in leukocytes through P38 mitogen-activated protein kinase: Role in systemic inflammation in decompensated cirrhosis. Hepatology. 68:1937–1952. 2018. View Article : Google Scholar : PubMed/NCBI | |
Casulleras M, Flores-Costa R, Duran-Güell M, Alcaraz-Quiles J, Sanz S, Titos E, López-Vicario C, Fernández J, Horrillo R, Costa M, et al: Albumin internalizes and inhibits endosomal TLR signaling in leukocytes from patients with decompensated cirrhosis. Sci Transl Med. 12:eaax51352020. View Article : Google Scholar : PubMed/NCBI | |
Chen TA, Tsao YC, Chen A, Lo GH, Lin CK, Yu HC, Cheng LC, Hsu PI and Tsai WL: Effect of intravenous albumin on endotoxin removal, cytokines, and nitric oxide production in patients with cirrhosis and spontaneous bacterial peritonitis. Scand J Gastroenterol. 44:619–625. 2009. View Article : Google Scholar : PubMed/NCBI | |
Delaney AP, Dan A, McCaffrey J and Finfer S: The role of albumin as a resuscitation fluid for patients with sepsis: A systematic review and meta-analysis. Crit Care Med. 39:386–391. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anraku M, Yamasaki K, Maruyama T, Kragh-Hansen U and Otagiri M: Effect of oxidative stress on the structure and function of human serum albumin. Pharm Res. 18:632–639. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vairappan B: Endothelial dysfunction in cirrhosis: Role of inflammation and oxidative stress. World J Hepatol. 7:443–459. 2015. View Article : Google Scholar : PubMed/NCBI | |
Magzal F, Sela S, Szuchman-Sapir A, Tamir S, Michelis R and Kristal B: In-vivo oxidized albumin-a pro-inflammatory agent in hypoalbuminemia. PLoS One. 12:e01777992017. View Article : Google Scholar : PubMed/NCBI | |
Keszler A, Zhang Y and Hogg N: Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: How are S-nitrosothiols formed? Free Radic Biol Med. 48:55–64. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gow AJ, Buerk DG and Ischiropoulos H: A novel reaction mechanism for the formation of S-nitrosothiol in vivo. J Biol Chem. 272:2841–2845. 1997. View Article : Google Scholar : PubMed/NCBI | |
Naldi M, Baldassarre M, Domenicali M, Bartolini M and Caraceni P: Structural and functional integrity of human serum albumin: Analytical approaches and clinical relevance in patients with liver cirrhosis. J Pharm Biomed Anal. 144:138–153. 2017. View Article : Google Scholar : PubMed/NCBI | |
Berlett BS and Stadtman ER: Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 272:20313–20316. 1997. View Article : Google Scholar : PubMed/NCBI | |
Bhat A, Das S, Yadav G, Chaudhary S, Vyas A, Islam M, Gupta AC, Bajpai M, Maiwall R, Maras JS and Sarin SK: Hyperoxidized albumin modulates platelets and promotes inflammation through CD36 receptor in severe alcoholic hepatitis. Hepatol Commun. 4:50–65. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stewart AJ, Blindauer CA, Berezenko S, Sleep D, Tooth D and Sadler PJ: Role of Tyr84 in controlling the reactivity of Cys34 of human albumin. FEBS J. 272:353–362. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kawakami A, Kubota K, Yamada N, Tagami U, Takehana K, Sonaka I, Suzuki E and Hirayama K: Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J. 273:3346–3357. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki K, Chuang VT, Maruyama T and Otagiri M: Albumin-drug interaction and its clinical implication. Biochim Biophys Acta. 1830:5435–5443. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oettl K, Birner-Gruenberger R, Spindelboeck W, Stueger HP, Dorn L, Stadlbauer V, Putz-Bankuti C, Krisper P, Graziadei I, Vogel W, et al: Oxidative albumin damage in chronic liver failure: Relation to albumin binding capacity, liver dysfunction and survival. J Hepatol. 59:978–983. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nagumo K, Tanaka M, Chuang VT, Setoyama H, Watanabe H, Yamada N, Kubota K, Tanaka M, Matsushita K, Yoshida A, et al: Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases. PLoS One. 9:e852162014. View Article : Google Scholar : PubMed/NCBI | |
Brownlee M, Vlassara H and Cerami A: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med. 101:527–537. 1984. View Article : Google Scholar : PubMed/NCBI | |
Cohen MP: Intervention strategies to prevent pathogenetic effects of glycated albumin. Arch Biochem Biophys. 419:25–30. 2003. View Article : Google Scholar : PubMed/NCBI | |
Rabbani G and Ahn SN: Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. Int J Biol Macromol. 123:979–990. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rondeau P and Bourdon E: The glycation of albumin: Structural and functional impacts. Biochimie. 93:645–658. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ding A, Ojingwa JC, McDonagh AF, Burlingame AL and Benet LZ: Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci USA. 90:3797–3801. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tabata F, Wada Y, Kawakami S and Miyaji K: Serum albumin redox states: More than oxidative stress biomarker. Antioxidants (Basel). 10:5032021. View Article : Google Scholar : PubMed/NCBI | |
Thornalley PJ, Langborg A and Minhas HS: Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 344(Pt 1(Pt 1)): 109–116. 1999. View Article : Google Scholar : PubMed/NCBI | |
Brownlee M, Cerami A and Vlassara H: Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 318:1315–1321. 1988. View Article : Google Scholar : PubMed/NCBI | |
Ahmed N, Dobler D, Dean M and Thornalley PJ: Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem. 280:5724–5732. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fuentes-Lemus E, Reyes JS, Lopez-Alarcon C and Davies MJ: Crowding modulates the glycation of plasma proteins: In vitro analysis of structural modifications to albumin and transferrin and identification of sites of modification. Free Radic Biol Med. 193((Pt 2)): 551–566. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bohney JP and Feldhoff RC: Effects of nonenzymatic glycosylation and fatty acids on tryptophan binding to human serum albumin. Biochem Pharmacol. 43:1829–1834. 1992. View Article : Google Scholar : PubMed/NCBI | |
Barnaby OS, Cerny RL, Clarke W and Hage DS: Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta. 412:277–285. 2011. View Article : Google Scholar : PubMed/NCBI | |
Okabe N and Hashizume N: Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biol Pharm Bull. 17:16–21. 1994. View Article : Google Scholar : PubMed/NCBI | |
Baraka-Vidot J, Guerin-Dubourg A, Bourdon E and Rondeau P: Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie. 94:1960–1967. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T and Otagiri M: The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta. 1623:88–97. 2003. View Article : Google Scholar : PubMed/NCBI | |
Joseph JS and Hage DS: The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J Pharm Biomed Anal. 53:811–818. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shaklai N, Garlick RL and Bunn HF: Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 259:3812–3817. 1984. View Article : Google Scholar : PubMed/NCBI | |
Barzegar A, Moosavi-Movahedi AA, Sattarahmady N, Hosseinpour-Faizi MA, Aminbakhsh M, Ahmad F, Saboury AA, Ganjali MR and Norouzi P: Spectroscopic studies of the effects of glycation of human serum albumin on L-Trp binding. Protein Pept Lett. 14:13–18. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mendez DL, Jensen RA, McElroy LA, Pena JM and Esquerra RM: The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch Biochem Biophys. 444:92–99. 2005. View Article : Google Scholar : PubMed/NCBI | |
Watanabe A, Matsuzaki S, Moriwaki H, Suzuki K and Nishiguchi S: Problems in serum albumin measurement and clinical significance of albumin microheterogeneity in cirrhotics. Nutrition. 20:351–357. 2004. View Article : Google Scholar : PubMed/NCBI | |
Horiuchi S: The liver is the main site for metabolism of circulating advanced glycation end products. J Hepatol. 36:123–125. 2002. View Article : Google Scholar : PubMed/NCBI | |
Patche J, Girard D, Catan A, Boyer F, Dobi A, Planesse C, Diotel N, Guerin-Dubourg A, Baret P, Bravo SB, et al: Diabetes-induced hepatic oxidative stress: A new pathogenic role for glycated albumin. Free Radic Biol Med. 102:133–148. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Chen Q, Huang J, Gong W, Zou Y, Zhang L, Liu P and Huang H: CK2α promotes advanced glycation end products-induced expressions of fibronectin and intercellular adhesion molecule-1 via activating MRTF-A in glomerular mesangial cells. Biochem Pharmacol. 148:41–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Scavello F, Zeni F, Milano G, Macrì F, Castiglione S, Zuccolo E, Scopece A, Pezone G, Tedesco CC, Nigro P, et al: Soluble receptor for advanced glycation end-products regulates age-associated cardiac fibrosis. Int J Biol Sci. 17:2399–2416. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goodwin M, Herath C, Jia Z, Leung C, Coughlan MT, Forbes J and Angus P: Advanced glycation end products augment experimental hepatic fibrosis. J Gastroenterol Hepatol. 28:369–376. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR and Loscalzo J: Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA. 89:7674–7677. 1992. View Article : Google Scholar : PubMed/NCBI | |
Tsikas D: Extra-platelet low-molecular-mass thiols mediate the inhibitory action of S-nitrosoalbumin on human platelet aggregation via S-transnitrosylation of the platelet surface. Amino Acids. 53:563–573. 2021. View Article : Google Scholar : PubMed/NCBI | |
Burczynski FJ, Wang GQ and Hnatowich M: Effect of nitric oxide on albumin-palmitate binding. Biochem Pharmacol. 49:91–96. 1995. View Article : Google Scholar : PubMed/NCBI | |
McNaughton L, Puttagunta L, Martinez-Cuesta MA, Kneteman N, Mayers I, Moqbel R, Hamid Q and Radomski MW: Distribution of nitric oxide synthase in normal and cirrhotic human liver. Proc Natl Acad Sci USA. 99:17161–17166. 2002. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Mandapati S, Skipper PL, Tannenbaum SR and Wishnok JS: Site-selective nitration of tyrosine in human serum albumin by peroxynitrite. Anal Biochem. 293:43–52. 2001. View Article : Google Scholar : PubMed/NCBI | |
Andersen JT, Dalhus B, Cameron J, Daba MB, Plumridge A, Evans L, Brennan SO, Gunnarsen KS, Bjørås M, Sleep D and Sandlie I: Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat Commun. 3:6102012. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Curtis G, Rao N, Bampos N and Lau E: Characterization of the Co(2+) and Ni(2+) binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. Eur J Biochem. 268:42–47. 2001. View Article : Google Scholar : PubMed/NCBI | |
Naldi M, Giannone FA, Baldassarre M, Domenicali M, Caraceni P, Bernardi M and Bertucci C: A fast and validated mass spectrometry method for the evaluation of human serum albumin structural modifications in the clinical field. Eur J Mass Spectrom (Chichester). 19:491–496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Rael LT, Bar-Or R, Slone DS and Craun ML: The formation and rapid clearance of a truncated albumin species in a critically ill patient. Clin Chim Acta. 365:346–349. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Winkler JV, Vanbenthuysen K, Harris L, Lau E and Hetzel FW: Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: A preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am Heart J. 141:985–991. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ogasawara Y, Namai T, Togawa T and Ishii K: Formation of albumin dimers induced by exposure to peroxides in human plasma: A possible biomarker for oxidative stress. Biochem Biophys Res Commun. 340:353–358. 2006. View Article : Google Scholar : PubMed/NCBI | |
Naldi M, Baldassarre M, Nati M, Laggetta M, Giannone FA, Domenicali M, Bernardi M, Caraceni P and Bertucci C: Mass spectrometric characterization of human serum albumin dimer: A new potential biomarker in chronic liver diseases. J Pharm Biomed Anal. 112:169–175. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chubarov A, Spitsyna A, Krumkacheva O, Mitin D, Suvorov D, Tormyshev V, Fedin M, Bowman MK and Bagryanskaya E: Reversible dimerization of human serum albumin. Molecules. 26:1082020. View Article : Google Scholar : PubMed/NCBI | |
Baldassarre M, Domenicali M, Naldi M, Laggetta M, Giannone FA, Biselli M, Patrono D, Bertucci C, Bernardi M and Caraceni P: Albumin homodimers in patients with cirrhosis: Clinical and prognostic relevance of a novel identified structural alteration of the molecule. Sci Rep. 6:359872016. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or R, Rael LT and Bar-Or D: Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin. Rapid Commun Mass Spectrom. 22:711–716. 2008. View Article : Google Scholar : PubMed/NCBI | |
Domenicali M, Baldassarre M, Giannone FA, Naldi M, Mastroroberto M, Biselli M, Laggetta M, Patrono D, Bertucci C, Bernardi M and Caraceni P: Posttranscriptional changes of serum albumin: Clinical and prognostic significance in hospitalized patients with cirrhosis. Hepatology. 60:1851–1860. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paar M, Fengler VH, Rosenberg DJ, Krebs A, Stauber RE, Oettl K and Hammel M: Albumin in patients with liver disease shows an altered conformation. Commun Biol. 4:7312021. View Article : Google Scholar : PubMed/NCBI | |
Oettl K, Stadlbauer V, Petter F, Greilberger J, Putz-Bankuti C, Hallström S, Lackner C and Stauber RE: Oxidative damage of albumin in advanced liver disease. Biochim Biophys Acta. 1782:469–473. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rashid G, Benchetrit S, Fishman D and Bernheim J: Effect of advanced glycation end-products on gene expression and synthesis of TNF-alpha and endothelial nitric oxide synthase by endothelial cells. Kidney Int. 66:1099–1106. 2004. View Article : Google Scholar : PubMed/NCBI | |
Arroyo V and Claria J: Acute-on-Chronic liver failure, human serum albumin, and immune modulation: The beginning of an exciting adventure. Clin Gastroenterol Hepatol. 16:633–636. 2018. View Article : Google Scholar : PubMed/NCBI | |
O'Brien AJ, Fullerton JN, Massey KA, Auld G, Sewell G, James S, Newson J, Karra E, Winstanley A, Alazawi W, et al: Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med. 20:518–523. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trebicka J, Amoros A, Pitarch C, Titos E, Alcaraz-Quiles J, Schierwagen R, Deulofeu C, Fernandez-Gomez J, Piano S, Caraceni P, et al: Addressing profiles of systemic inflammation across the different clinical phenotypes of acutely decompensated cirrhosis. Front Immunol. 10:4762019. View Article : Google Scholar : PubMed/NCBI | |
Claria J, Stauber RE, Coenraad MJ, Moreau R, Jalan R, Pavesi M, Amorós À, Titos E, Alcaraz-Quiles J, Oettl K, et al: Systemic inflammation in decompensated cirrhosis: Characterization and role in acute-on-chronic liver failure. Hepatology. 64:1249–1264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Naldi M, Baldassarre M, Domenicali M, Giannone FA, Bossi M, Montomoli J, Sandahl TD, Glavind E, Vilstrup H, Caraceni P and Bertucci C: Mass spectrometry characterization of circulating human serum albumin microheterogeneity in patients with alcoholic hepatitis. J Pharm Biomed Anal. 122:141–147. 2016. View Article : Google Scholar : PubMed/NCBI | |
Das S, Hussain MS, Maras JS, Kumar J, Shasthry SM, Nayak S, Arora V, Vijayaraghavan R, Sharma S, Maiwall R and Sarin SK: Modification patterns of urinary albumin correlates with serum albumin and outcome in severe alcoholic hepatitis. J Clin Gastroenterol. 53:e243–e252. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pawlak M, Lefebvre P and Staels B: Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62:720–733. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang Q, Liu M, Xu G, Yin H, Wang D, Xie F, Jin B, Jin Y, Yang H, et al: Albumin binding function is a novel biomarker for early liver damage and disease progression in non-alcoholic fatty liver disease. Endocrine. 69:294–302. 2020. View Article : Google Scholar : PubMed/NCBI | |
Santos JC, Valentim IB, de Araujo OR, Ataide Tda R and Goulart MO: Development of nonalcoholic hepatopathy: Contributions of oxidative stress and advanced glycation end products. Int J Mol Sci. 14:19846–19866. 2013. View Article : Google Scholar : PubMed/NCBI | |
Priken K, Tapia G, Cadagan C, Quezada N, Torres J, D'Espessailles A and Pettinelli P: Higher hepatic advanced glycation end products and liver damage markers are associated with nonalcoholic steatohepatitis. Nutr Res. 104:71–81. 2022. View Article : Google Scholar : PubMed/NCBI | |
Palma-Duran SA, Kontogianni MD, Vlassopoulos A, Zhao S, Margariti A, Georgoulis M, Papatheodoridis G and Combet E: Serum levels of advanced glycation end-products (AGEs) and the decoy soluble receptor for AGEs (sRAGE) can identify non-alcoholic fatty liver disease in age-, sex- and BMI-matched normo-glycemic adults. Metabolism. 83:120–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pereira ENGDS, Paula DP, de Araujo BP, da Fonseca MJM, Diniz MFHS, Daliry A and Griep RH: Advanced glycation end product: A potential biomarker for risk stratification of non-alcoholic fatty liver disease in ELSA-Brasil study. World J Gastroenterol. 27:4913–4928. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yavuz F, Biyik M, Asil M, Dertli R, Demir A, Polat H, Uysal S and Ataseven H: Serum ischemic modified albumin (IMA) concentration and IMA/albumin ratio in patients with hepatitis B-related chronic liver diseases. Turk J Med Sci. 47:947–953. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cakir M, Karahan SC, Mentese A, Sag E, Cobanoglu U, Polat TB and Erduran E: Ischemia-Modified albumin levels in children with chronic liver disease. Gut Liver. 6:92–97. 2012. View Article : Google Scholar : PubMed/NCBI | |
European Association for the Study of the Liver. Electronic address, . simpleeasloffice@easloffice.eu; European Association for the Study of the Liver: EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 69:406–460. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bai Z, Méndez-Sánchez N, Romeiro FG, Mancuso A, Philips CA, Tacke F, Basaranoglu M, Primignani M, Ibrahim M, Wong YJ, et al: Use of albumin infusion for cirrhosis-related complications: An international position statement. JHEP Rep. 5:1007852023. View Article : Google Scholar : PubMed/NCBI | |
Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, Castells L, Vargas V, Soriano G, Guevara M, et al: Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 341:403–409. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bortoluzzi A, Ceolotto G, Gola E, Sticca A, Bova S, Morando F, Piano S, Fasolato S, Rosi S, Gatta A and Angeli P: Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: Molecular mechanisms. Hepatology. 57:266–276. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fernandez J, Claria J, Amoros A, Aguilar F, Castro M, Casulleras M, Acevedo J, Duran-Güell M, Nuñez L, Costa M, et al: Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis. Gastroenterology. 157:149–162. 2019. View Article : Google Scholar : PubMed/NCBI | |
Caraceni P, Riggio O, Angeli P, Alessandria C, Neri S, Foschi FG, Levantesi F, Airoldi A, Boccia S, Svegliati-Baroni G, et al: Long-term albumin administration in decompensated cirrhosis (ANSWER): An open-label randomised trial. Lancet. 391:2417–2429. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alukal JJ, John S and Thuluvath PJ: Hyponatremia in Cirrhosis: An Update. Am J Gastroenterol. 115:1775–1785. 2020. View Article : Google Scholar : PubMed/NCBI | |
Teh KB, Loo JH, Tam YC and Wong YJ: Efficacy and safety of albumin infusion for overt hepatic encephalopathy: A systematic review and meta-analysis. Dig Liver Dis. 53:817–823. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rose CF, Amodio P, Bajaj JS, Dhiman RK, Montagnese S, Taylor-Robinson SD, Vilstrup H and Jalan R: Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J Hepatol. 73:1526–1547. 2020. View Article : Google Scholar : PubMed/NCBI | |
China L, Becares N, Rhead C, Tittanegro T, Freemantle N and O'Brien A: Targeted albumin infusions do not improve systemic inflammation or cardiovascular function in decompensated cirrhosis. Clin Transl Gastroenterol. 13:e004762022. View Article : Google Scholar : PubMed/NCBI | |
Sandi BB, Leao GS, de Mattos AA and de Mattos AZ: Long-term albumin administration in patients with cirrhosis and ascites: A meta-analysis of randomized controlled trials. J Gastroenterol Hepatol. 36:609–617. 2021. View Article : Google Scholar : PubMed/NCBI | |
Plantier JL, Duretz V, Devos V, Urbain R and Jorieux S: Comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals. 44:226–233. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mikkat S, Dominik A, Stange J and Eggert M: Comparison of accompanying proteins in different therapeutic human serum albumin preparations. Biologicals. 64:41–48. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bar-Or D, Bar-Or R, Rael LT, Gardner DK, Slone DS and Craun ML: Heterogeneity and oxidation status of commercial human albumin preparations in clinical use. Crit Care Med. 33:1638–1641. 2005. View Article : Google Scholar : PubMed/NCBI | |
Berezenko S: Heterogeneity and oxidation status of commercial human albumin preparations in clinical use. Crit Care Med. 34:1291author reply 1291. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cheungpasitporn W, Thongprayoon C, Zoghby ZM and Kashani K: MARS: Should i use it? Adv Chronic Kidney Dis. 28:47–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wallon G, Guth C, Guichon C, Thevenon S, Gazon M, Viale JP, Schoeffler M, Duperret S and Aubrun F: Extracorporeal albumin dialysis in liver failure with MARS and SPAD: A Randomized crossover trial. Blood Purif. 51:243–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Klammt S, Mitzner SR, Stange J, Loock J, Heemann U, Emmrich J, Reisinger EC and Schmidt R: Improvement of impaired albumin binding capacity in acute-on-chronic liver failure by albumin dialysis. Liver Transpl. 14:1333–1339. 2008. View Article : Google Scholar : PubMed/NCBI | |
Oettl K, Stadlbauer V, Krisper P and Stauber RF: Effect of extracorporeal liver support by molecular adsorbents recirculating system and Prometheus on redox state of albumin in acute-on-chronic liver failure. Ther Apher Dial. 13:431–436. 2009. View Article : Google Scholar : PubMed/NCBI |