CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review)
- Authors:
- Dahua Sun
- Xiang Shi
- Sanyan Li
- Xiaohua Wang
- Xiao Yang
- Meiping Wan
-
Affiliations: Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China, Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China, Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China, Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China, Department of Traditional Chinese Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China - Published online on: January 23, 2024 https://doi.org/10.3892/mmr.2024.13171
- Article Number: 47
-
Copyright: © Sun et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Tsimberidou AM, Fountzilas E, Nikanjam M and Kurzrock R: Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev. 86:1020192020. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhou Q, Masubuchi T, Shi X, Li H, Xu X, Huang M, Meng L, He X, Zhu H, et al: Multiple Signaling Roles of CD3ε and Its Application in CAR-T Cell Therapy. Cell. 182:855–871. e232020. View Article : Google Scholar : PubMed/NCBI | |
Parker KR, Migliorini D, Perkey E, Yost KE, Bhaduri A, Bagga P, Haris M, Wilson NE, Liu F, Gabunia K, et al: Single-Cell analyses identify brain mural cells expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell. 183:126–142. e172020. View Article : Google Scholar : PubMed/NCBI | |
Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11:692021. View Article : Google Scholar : PubMed/NCBI | |
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX and Zhu Z: CAR race to cancer immunotherapy: From CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res. 41:1192022. View Article : Google Scholar : PubMed/NCBI | |
Ahmad A: CAR-T Cell Therapy. Int J Mol Sci. 21:43032020. View Article : Google Scholar : PubMed/NCBI | |
Feins S, Kong W, Williams EF, Milone MC and Fraietta JA: An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol. 94((S1)): S3–S9. 2019.PubMed/NCBI | |
Majzner RG and Mackall CL: Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8:1219–1226. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abreu TR, Fonseca NA, Gonçalves N and Moreira JN: Current challenges and emerging opportunities of CAR-T cell therapies. J Control Release. 319:246–261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Labanieh L, Majzner RG, Klysz D, Sotillo E, Fisher CJ, Vilches-Moure JG, Pacheco KZB, Malipatlolla M, Xu P, Hui JH, et al: Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell. 185:1745–1763. e222022. View Article : Google Scholar : PubMed/NCBI | |
Flugel CL, Majzner RG, Krenciute G, Dotti G, Riddell SR, Wagner DL and Abou-El-Enein M: Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat Rev Clin Oncol. 20:49–62. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chohan KL, Siegler EL and Kenderian SS: CAR-T Cell Therapy: The efficacy and toxicity balance. Curr Hematol Malig Rep. 18:9–18. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen YJ, Abila B and Mostafa Kamel Y: CAR-T: What Is Next? Cancers (Basel). 15:6632023. View Article : Google Scholar : PubMed/NCBI | |
Schubert ML, Schmitt M, Wang L, Ramos CA, Jordan K, Müller-Tidow C and Dreger P: Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann Oncol. 32:34–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bao C, Gao Q, Li LL, Han L, Zhang B, Ding Y, Song Z, Zhang R, Zhang J and Wu XH: The application of nanobody in CAR-T therapy. Biomolecules. 11:2382021. View Article : Google Scholar : PubMed/NCBI | |
Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, et al: Tuning the antigen density requirement for CAR T-cell Activity. Cancer Discov. 10:702–723. 2020. View Article : Google Scholar : PubMed/NCBI | |
Depil S, Duchateau P, Grupp SA, Mufti G and Poirot L: ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat Rev Drug Discov. 19:185–199. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S and Kobold S: Killing mechanisms of chimeric antigen receptor (CAR) T Cells. Int J Mol Sci. 20:12832019. View Article : Google Scholar : PubMed/NCBI | |
Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, et al: Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 36:847–856. 2018. View Article : Google Scholar : PubMed/NCBI | |
van de Donk NWCJ, Usmani SZ and Yong K: CAR T-cell therapy for multiple myeloma: State of the art and prospects. Lancet Haematol. 8:e446–e461. 2021. View Article : Google Scholar : PubMed/NCBI | |
Srivastava S and Riddell SR: Engineering CAR-T cells: Design concepts. Trends Immunol. 36:494–502. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duan Y, Chen R, Huang Y, Meng X, Chen J, Liao C, Tang Y, Zhou C, Gao X and Sun J: Tuning the ignition of CAR: optimizing the affinity of scFv to improve CAR-T therapy. Cell Mol Life Sci. 79:142021. View Article : Google Scholar : PubMed/NCBI | |
Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, Good Z, Belk JA, Daniel B, Klysz D, et al: Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 372:eaba17862021. View Article : Google Scholar : PubMed/NCBI | |
Tousley AM, Rotiroti MC, Labanieh L, Rysavy LW, Kim WJ, Lareau C, Sotillo E, Weber EW, Rietberg SP, Dalton GN, et al: Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature. 615:507–516. 2023. View Article : Google Scholar : PubMed/NCBI | |
Honikel MM and Olejniczak SH: Co-Stimulatory receptor signaling in CAR-T Cells. Biomolecules. 12:13032022. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Li X, He Y, Zhu W, Gao L, Liu Y, Gao L, Wen Q, Zhong JF, Zhang C and Zhang X: Recent advances in CAR-T cell engineering. J Hematol Oncol. 13:862020. View Article : Google Scholar : PubMed/NCBI | |
Singh N, Frey NV, Engels B, Barrett DM, Shestova O, Ravikumar P, Cummins KD, Lee YG, Pajarillo R, Chun I, et al: Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nat Med. 27:842–850. 2021. View Article : Google Scholar : PubMed/NCBI | |
Smole A, Benton A, Poussin MA, Eiva MA, Mezzanotte C, Camisa B, Greco B, Sharma P, Minutolo NG, Gray F, et al: Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell. 40:1470–1487. e772022. View Article : Google Scholar : PubMed/NCBI | |
Drougkas K, Karampinos K, Karavolias I, Koumprentziotis IA, Ploumaki I, Triantafyllou E, Trontzas I and Kotteas E: Comprehensive clinical evaluation of CAR-T cell immunotherapy for solid tumors: A path moving forward or a dead end? J Cancer Res Clin Oncol. 149:2709–2734. 2023. View Article : Google Scholar : PubMed/NCBI | |
Westin J and Sehn LH: CAR T cells as a second-line therapy for large B-cell lymphoma: A paradigm shift? Blood. 139:2737–2746. 2022. View Article : Google Scholar : PubMed/NCBI | |
Roselli E, Boucher JC, Li G, Kotani H, Spitler K, Reid K, Cervantes EV, Bulliard Y, Tu N, Lee SB, et al: 4-1BB and optimized CD28 co-stimulation enhances function of human mono-specific and bi-specific third-generation CAR T cells. J Immunother Cancer. 9:e0033542021. View Article : Google Scholar : PubMed/NCBI | |
Martinez M and Moon EK: CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol. 10:1282019. View Article : Google Scholar : PubMed/NCBI | |
Barros LRC, Couto SCF, da Silva Santurio D, Paixão EA, Cardoso F, da Silva VJ, Klinger P, Ribeiro PDAC, Rós FA, Oliveira TGM, et al: Systematic review of available CAR-T Cell Trials around the World. Cancers (Basel). 14:26672022. View Article : Google Scholar : PubMed/NCBI | |
Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, Friebel E, Nannini F, Rindlisbacher L, Roberts TA, et al: Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 12:4442021. View Article : Google Scholar : PubMed/NCBI | |
Glienke W, Dragon AC, Zimmermann K, Martyniszyn-Eiben A, Mertens M, Abken H, Rossig C, Altvater B, Aleksandrova K, Arseniev L, et al: GMP-Compliant Manufacturing of TRUCKs: CAR T Cells targeting GD(2) and Releasing Inducible IL-18. Front Immunol. 13:8397832022. View Article : Google Scholar : PubMed/NCBI | |
Etxeberria I, Glez-Vaz J, Teijeira Á and Melero I: New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 4 (Suppl 3):e0007332020. View Article : Google Scholar : PubMed/NCBI | |
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M and Melero I: Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol. 46:513–522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, An L, Huang R, Xiong J, Yang H, Wang X and Zhang X: Strategies to enhance CAR-T persistence. Biomark Res. 10:862022. View Article : Google Scholar : PubMed/NCBI | |
Xiao Q, Zhang X, Tu L, Cao J, Hinrichs CS and Su X: Size-dependent activation of CAR-T cells. Sci Immunol. 7:eabl39952022. View Article : Google Scholar : PubMed/NCBI | |
Zheng N, Fang J, Xue G, Wang Z, Li X, Zhou M, Jin G, Rahman MM, McFadden G and Lu Y: Induction of tumor cell autosis by myxoma virus-infected CAR-T and TCR-T cells to overcome primary and acquired resistance. Cancer Cell. 40:973–985. e72022. View Article : Google Scholar : PubMed/NCBI | |
Brudno JN and Kochenderfer JN: Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 34:45–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Boyiadzis MM, Dhodapkar MV, Brentjens RJ, Kochenderfer JN, Neelapu SS, Maus MV, Porter DL, Maloney DG, Grupp SA, Mackall CL, et al: Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: Clinical perspective and significance. J Immunother Cancer. 6:1372018. View Article : Google Scholar : PubMed/NCBI | |
Choi BD, Yu X, Castano AP, Bouffard AA, Schmidts A, Larson RC, Bailey SR, Boroughs AC, Frigault MJ, Leick MB, et al: CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol. 37:1049–1058. 2019. View Article : Google Scholar : PubMed/NCBI | |
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G and Cenciarelli C: Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med. 10:5019–5030. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Fang X, Tuhin IJ, Tan J, Ye J, Jia Y, Xu N, Kang L, Li M, Lou X, et al: CAR T cells equipped with a fully human scFv targeting Trop2 can be used to treat pancreatic cancer. J Cancer Res Clin Oncol. 148:2261–2274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Sun B, Xue T, Li R, Lin C, Gao Y, Sun L, Zhuo Y and Wang D: Advances in CAR T-cell therapy in bile duct, pancreatic, and gastric cancers. Front Immunol. 13:10256082022. View Article : Google Scholar : PubMed/NCBI | |
Entezam M, Sanaei MJ, Mirzaei Y, Mer AH, Abdollahpour-Alitappeh M, Azadegan-Dehkordi F and Bagheri N: Current progress and challenges of immunotherapy in gastric cancer: A focus on CAR-T cells therapeutic approach. Life Sci. 318:1214592023. View Article : Google Scholar : PubMed/NCBI | |
Davenport AJ, Jenkins MR, Cross RS, Yong CS, Prince HM, Ritchie DS, Trapani JA, Kershaw MH, Darcy PK and Neeson PJ: CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol Res. 3:483–494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Gu YM, Zhang F, Zhang ZC, Zhang YT, He YD, Wang L, Zhou N, Tang FT, Liu HJ and Li YM: Construction of PD1/CD28 chimeric-switch receptor enhances anti-tumor ability of c-Met CAR-T in gastric cancer. Oncoimmunology. 10:19014342021. View Article : Google Scholar : PubMed/NCBI | |
Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K, Nelson A, et al: B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 129:2210–2221. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pasqui DM, Latorraca CDOC, Pacheco RL and Riera R: CAR-T cell therapy for patients with hematological malignancies. A systematic review. Eur J Haematol. 109:601–618. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fabrizio VA, Boelens JJ, Mauguen A, Baggott C, Prabhu S, Egeler E, Mavroukakis S, Pacenta H, Phillips CL, Rossoff J, et al: Optimal fludarabine lymphodepletion is associated with improved outcomes after CAR T-cell therapy. Blood Adv. 6:1961–1968. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bupha-Intr O, Haeusler G, Chee L, Thursky K, Slavin M and The B: CAR-T cell therapy and infection: a review. Expert Rev Anti Infect Ther. 19:749–758. 2021. View Article : Google Scholar : PubMed/NCBI | |
Roddie C, Neill L, Osborne W, Iyengar S, Tholouli E, Irvine D, Chaganti S, Besley C, Bloor A, Jones C, et al: Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma. Blood Adv. 7:2872–2883. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mangal JL, Handlos JL, Esrafili A, Inamdar S, Mcmillian S, Wankhede M, Gottardi R and Acharya AP: Engineering metabolism of chimeric antigen receptor (CAR) cells for developing efficient immunotherapies. Cancers (Basel). 13:11232021. View Article : Google Scholar : PubMed/NCBI | |
Chow A, Perica K, Klebanoff CA and Wolchok JD: Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 19:775–790. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martino M, Alati C, Canale FA, Musuraca G, Martinelli G and Cerchione C: A review of clinical outcomes of CAR T-Cell Therapies for B-Acute lymphoblastic leukemia. Int J Mol Sci. 22:21502021. View Article : Google Scholar : PubMed/NCBI | |
Geldres C, Savoldo B and Dotti G: Chimeric antigen receptor-redirected T cells return to the bench. Semin Immunol. 28:3–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, et al: Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol. 15:47–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang H, Lan H, Wu J and Xiao Y: CAR-T cell therapy in multiple myeloma: Current limitations and potential strategies. Front Immunol. 14:11014952023. View Article : Google Scholar : PubMed/NCBI | |
Haslauer T, Greil R, Zaborsky N and Geisberger R: CAR T-Cell therapy in hematological malignancies. Int J Mol Sci. 22:89962021. View Article : Google Scholar : PubMed/NCBI | |
Jin X, Xu Q, Pu C, Zhu K, Lu C, Jiang Y, Xiao L, Han Y and Lu L: Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell Mol Immunol. 18:1896–1903. 2021. View Article : Google Scholar : PubMed/NCBI | |
Denlinger N, Bond D and Jaglowski S: CAR T-cell therapy for B-cell lymphoma. Curr Probl Cancer. 46:1008262022. View Article : Google Scholar : PubMed/NCBI | |
Shalabi H, Qin H, Su A, Yates B, Wolters PL, Steinberg SM, Ligon JA, Silbert S, DéDé K, Benzaoui M, et al: CD19/22 CAR T cells in children and young adults with B-ALL: Phase 1 results and development of a novel bicistronic CAR. Blood. 140:451–463. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, Ye Z and Qian Q: Current Progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 15:2548–2560. 2019. View Article : Google Scholar : PubMed/NCBI | |
Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V, Mancusi R, et al: GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 603:934–941. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zarrabi KK, Narayan V, Mille PJ, Zibelman MR, Miron B, Bashir B and Kelly WK: Bispecific PSMA antibodies and CAR-T in metastatic castration-resistant prostate cancer. Ther Adv Urol. 15:175628722311822192023. View Article : Google Scholar : PubMed/NCBI | |
Narayan V, Barber-Rotenberg JS, Jung IY, Lacey SF, Rech AJ, Davis MM, Hwang WT, Lal P, Carpenter EL, Maude SL, et al: PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: A phase 1 trial. Nat Med. 28:724–734. 2022. View Article : Google Scholar : PubMed/NCBI | |
Miller IC, Zamat A, Sun LK, Phuengkham H, Harris AM, Gamboa L, Yang J, Murad JP, Priceman SJ and Kwong GA: Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat Biomed Eng. 5:1348–1359. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Li J, Ni F, Yang Z, Gui X, Bao Z, Zhao H, Wei G, Wang Y, Zhang M, et al: CAR-T cell therapy-related cytokine release syndrome and therapeutic response is modulated by the gut microbiome in hematologic malignancies. Nat Commun. 13:53132022. View Article : Google Scholar : PubMed/NCBI | |
Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A and Sadelain M: CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 24:731–738. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X and Li Y: Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. J Exp Clin Cancer Res. 40:3672021. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, Xu J, Zhuang Y, Zhang W, Weng XQ, et al: Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 116:9543–9551. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, Guo T, Kou H, Liu L, Tang L, et al: A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J Hematol Oncol. 14:1612021. View Article : Google Scholar : PubMed/NCBI | |
Jain T, Olson TS and Locke FL: How I treat cytopenias after CAR T-cell therapy. Blood. 141:2460–2469. 2023.PubMed/NCBI | |
Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA, et al: Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T Cells. Cancer Discov. 7:1404–1419. 2017. View Article : Google Scholar : PubMed/NCBI | |
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G and Fusco N: CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs. 31:593–605. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Hu Y, Yang J, Li W, Zhang M, Wang Q, Zhang L, Wei G, Tian Y, Zhao K, et al: Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL. Nature. 609:369–374. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mensali N, Köksal H, Joaquina S, Wernhoff P, Casey NP, Romecin P, Panisello C, Rodriguez R, Vimeux L, Juzeniene A, et al: ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun. 14:33752023. View Article : Google Scholar : PubMed/NCBI | |
Cappell KM and Kochenderfer JN: Long-term outcomes following CAR T cell therapy: What we know so far. Nat Rev Clin Oncol. 20:359–371. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shah NN and Fry TJ: Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385. 2019.PubMed/NCBI | |
Jayaraman J, Mellody MP, Hou AJ, Desai RP, Fung AW, Pham AHT, Chen YY and Zhao W: CAR-T design: Elements and their synergistic function. EBioMedicine. 58:1029312020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Qiu S, Li W, Wang K, Zhang Y, Yang H, Liu B, Li G, Li L, Chen M, et al: Tuning charge density of chimeric antigen receptor optimizes tonic signaling and CAR-T cell fitness. Cell Res. 33:341–354. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hamieh M, Dobrin A, Cabriolu A, van der Stegen SJC, Giavridis T, Mansilla-Soto J, Eyquem J, Zhao Z, Whitlock BM, Miele MM, et al: CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature. 568:112–116. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heitzeneder S, Bosse KR, Zhu Z, Zhelev D, Majzner RG, Radosevich MT, Dhingra S, Sotillo E, Buongervino S, Pascual-Pasto G, et al: GPC2-CAR T cells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell. 40:53–69.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ramos CA, Rouce R, Robertson CS, Reyna A, Narala N, Vyas G, Mehta B, Zhang H, Dakhova O, Carrum G, et al: In Vivo Fate and Activity of Second-versus Third-Generation CD19-Specific CAR-T Cells in B Cell Non-Hodgkin's Lymphomas. Mol Ther. 26:2727–2737. 2018. View Article : Google Scholar : PubMed/NCBI | |
Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, et al: CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 126:2123–2138. 2016. View Article : Google Scholar : PubMed/NCBI | |
Song DG, Ye Q, Poussin M, Harms GM, Figini M and Powell DJ Jr: CD27 costimulation augments the survival and antitumor activity of redirected human T cells in vivo. Blood. 119:696–706. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bachy E, Le Gouill S, Di Blasi R, Sesques P, Manson G, Cartron G, Beauvais D, Roulin L, Gros FX, Rubio MT, et al: A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma. Nat Med. 28:2145–2154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han D, Xu Z, Zhuang Y, Ye Z and Qian Q: Current Progress in CAR-T cell therapy for hematological malignancies. J Cancer. 12:326–334. 2021. View Article : Google Scholar : PubMed/NCBI | |
Siddiqi T, Soumerai JD, Dorritie KA, Stephens DM, Riedell PA, Arnason J, Kipps TJ, Gillenwater HH, Gong L, Yang L, et al: Phase 1 TRANSCEND CLL 004 study of lisocabtagene maraleucel in patients with relapsed/refractory CLL or SLL. Blood. 139:1794–1806. 2022. View Article : Google Scholar : PubMed/NCBI | |
Feng D and Sun J: Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. Scand J Immunol. 92:e129102020. View Article : Google Scholar : PubMed/NCBI | |
Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, et al: Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N Engl J Med. 380:1726–1737. 2019. View Article : Google Scholar : PubMed/NCBI | |
Curran E and O'Brien M: Role of blinatumomab, inotuzumab, and CAR T-cells: Which to choose and how to sequence for patients with relapsed disease. Semin Hematol. 57:157–163. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, et al: CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 24:20–28. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Meng Q, Sun H, Zhang X, Yun J, Li B, Wu S, Li X, Yang H, Zhu H, et al: HER2-specific chimeric antigen receptor-T cells for targeted therapy of metastatic colorectal cancer. Cell Death Dis. 12:11092021. View Article : Google Scholar : PubMed/NCBI | |
Maggs L, Cattaneo G, Dal AE, Moghaddam AS and Ferrone S: CAR T Cell-Based immunotherapy for the treatment of glioblastoma. Front Neurosci. 15:6620642021. View Article : Google Scholar : PubMed/NCBI | |
Rotte A, Frigault MJ, Ansari A, Gliner B, Heery C and Shah B: Dose-response correlation for CAR-T cells: A systematic review of clinical studies. J Immunother Cancer. 10:e0056782022. View Article : Google Scholar : PubMed/NCBI | |
Dasyam N, George P and Weinkove R: Chimeric antigen receptor T-cell therapies: Optimising the dose. Br J Clin Pharmacol. 86:1678–1689. 2020. View Article : Google Scholar : PubMed/NCBI | |
Stefanski HE, Eaton A, Baggott C, Rossoff J, Verneris MR, Prabhu S, Pacenta HL, Phillips CL, Talano JA, Moskop A, et al: Higher doses of tisagenlecleucel are associated with improved outcomes: A report from the pediatric real-world CAR consortium. Blood Adv. 7:541–548. 2023. View Article : Google Scholar : PubMed/NCBI | |
Frigault M, Rotte A, Ansari A, Gliner B, Heery C and Shah B: Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res. 42:112023. View Article : Google Scholar : PubMed/NCBI | |
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P and Ahn BC: CAR T-Cell-Based gene therapy for cancers: New perspectives, challenges, and clinical developments. Front Immunol. 13:9259852022. View Article : Google Scholar : PubMed/NCBI | |
Wagner DL, Koehl U, Chmielewski M, Scheid C and Stripecke R: Review: Sustainable Clinical Development of CAR-T Cells-switching from viral transduction towards CRISPR-Cas Gene Editing. Front Immunol. 13:8654242022. View Article : Google Scholar : PubMed/NCBI | |
Gagelmann N, Riecken K, Wolschke C, Berger C, Ayuk FA, Fehse B and Kröger N: Development of CAR-T cell therapies for multiple myeloma. Leukemia. 34:2317–2332. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zeng W, Zhang Q, Zhu Y, Ou R, Peng L, Wang B, Shen H, Liu Z, Lu L, Zhang P and Liu S: Engineering Novel CD19/CD22 Dual-Target CAR-T cells for improved anti-tumor activity. Cancer Invest. 40:282–292. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ghaffari S, Khalili N and Rezaei N: CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. J Exp Clin Cancer Res. 40:2692021. View Article : Google Scholar : PubMed/NCBI | |
Hong M and Chen YY: Killer fatigue: Transition to NK-cell-like phenotype is a signature of CAR-T cell exhaustion. Cell. 184:6017–6019. 2021. View Article : Google Scholar : PubMed/NCBI | |
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, et al: An NK-like CAR T cell transition in CAR T cell dysfunction. Cell. 184:6081–6100. e262021. View Article : Google Scholar : PubMed/NCBI | |
Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, Purl M, Lee J, Yee JL, Yu W, et al: Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science. 378:eaba16242022. View Article : Google Scholar : PubMed/NCBI |