1
|
Broumand F, Lak SS, Nemati F and Mazidi A:
A study of the diagnostic value of Inhibin A tests for occurrence
of preeclampsia in pregnant women. Electron Physician.
10:6186–6192. 2018. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Duley L: The global impact of
pre-eclampsia and eclampsia. Semin Perinatol. 33:130–137. 2009.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Poon LC, Shennan A, Hyett JA, Kapur A,
Hadar E, Divakar H, McAuliffe F, da Silva Costa F, von Dadelszen P,
McIntyre HD, et al: The international federation of gynecology and
obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide
for first-trimester screening and prevention. Int J Gynaecol
Obstet. 145 (Suppl 1):S1–S33. 2019. View Article : Google Scholar
|
4
|
Rahma H, Indrawan IWA, Nooryanto M,
Rahajeng and Keman K: Effect of a black cumin (Nigella sativa)
ethanol extract on placental angiotensin II type 1-receptor
autoantibody (AT1-AA) serum levels and endothelin-1 (ET-1)
expression in a preeclampsia mouse model. J Taibah Univ Med Sci.
12:528–533. 2017.PubMed/NCBI
|
5
|
Belay Tolu L, Yigezu E, Urgie T and
Feyissa GT: Maternal and perinatal outcome of preeclampsia without
severe feature among pregnant women managed at a tertiary referral
hospital in urban Ethiopia. PLoS One. 15:e02306382020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Miller EC, Wilczek A, Bello NA, Tom S,
Wapner R and Suh Y: Pregnancy, preeclampsia and maternal aging:
From epidemiology to functional genomics. Ageing Res Rev.
73:1015352022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Suo M, Sun Y, Yang H, Ji J, He Y, Dong L,
Wang Y, Zhang Y, Zhang Y and Hao M: miR-183-5p suppressed the
invasion and migration of HTR-8/SVneo trophoblast cells partly via
targeting MMP-9 in preeclampsia. Biosci Rep. 40:BSR201925752020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Böing M, Brand-Saberi B and Napirei M:
Murine transcription factor Math6 is a regulator of placenta
development. Sci Rep. 8:149972018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Nelson DM: How the placenta affects your
life, from womb to tomb. Am J Obstet Gynecol. 213 (4
Suppl):S12–S13. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rayburn WF: The placenta: Its importance
from womb to tomb. Obstet Gynecol Clin North Am. 47:13–14. 2020.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu Y, Luo X, Fang Z, Zheng X, Zeng Y, Zhu
C, Gu J, Tang F, Hu Y, Hu G, et al: Transcription coactivator
Cited1 acts as an inducer of trophoblast-like state from mouse
embryonic stem cells through the activation of BMP signaling. Cell
Death Dis. 9:9242018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bai RX and Tang ZY: Long non-coding RNA
H19 regulates Bcl-2, Bax and phospholipid hydroperoxide glutathione
peroxidase expression in spontaneous abortion. Exp Ther Med.
21:412021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Xue Y, Chen C, Xu W, Xu H, Zheng J and Gu
Y: Downregulation of Frizzled-7 induces the apoptosis of
hepatocellular carcinoma cells through inhibition of NF-κB. Oncol
Lett. 15:7693–7701. 2018.PubMed/NCBI
|
14
|
Knöfler M and Pollheimer J: Human
placental trophoblast invasion and differentiation: A particular
focus on Wnt signaling. Front Genet. 4:1902013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Warrier S, Marimuthu R, Sekhar S,
Bhuvanalakshmi G, Arfuso F, Das AK, Bhonde R, Martins R and
Dharmarajan A: sFRP-mediated Wnt sequestration as a potential
therapeutic target for Alzheimer's disease. Int J Biochem Cell
Biol. 75:104–111. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liang CJ, Wang ZW, Chang YW, Lee KC, Lin
WH and Lee JL: SFRPs are biphasic modulators of
wnt-signaling-elicited cancer stem cell properties beyond
extracellular control. Cell Rep. 28:1511–1525.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu Q, Xu C, Zeng X, Zhang Z, Yang B and
Rao Z: Tumor suppressor role of sFRP-4 in hepatocellular carcinoma
via the Wnt/β-catenin signaling pathway. Mol Med Rep. 23:3362021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Saito T, Mitomi H, Imamhasan A, Hayashi T,
Mitani K, Takahashi M, Kajiyama Y and Yao T: Downregulation of
sFRP-2 by epigenetic silencing activates the β-catenin/Wnt
signaling pathway in esophageal basaloid squamous cell carcinoma.
Virchows Arch. 464:135–143. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Partl JZ, Fabijanovic D, Skrtic A, Vranic
S, Martic TN and Serman L: Immunohistochemical expression of SFRP1
and SFRP3 proteins in normal and malignant reproductive tissues of
rats and humans. Appl Immunohistochem Mol Morphol. 22:681–687.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zhang Z, Zhang L, Zhang L, Jia L, Wang P
and Gao Y: Association of Wnt2 and sFRP4 expression in the third
trimester placenta in women with severe preeclampsia. Reprod Sci.
20:981–989. 2013. View Article : Google Scholar : PubMed/NCBI
|
21
|
Grisaru-Granovsky S, Maoz M, Barzilay O,
Yin YJ, Prus D and Bar-Shavit R: Protease activated receptor-1,
PAR1, promotes placenta trophoblast invasion and beta-catenin
stabilization. J Cell Physiol. 218:512–521. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu Y, Liu X, Zheng H, Zhu H, Mai W, Huang
X and Huang Y: Multiple roles of sFRP2 in cardiac development and
cardiovascular disease. Int J Biol Sci. 16:730–738. 2020.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang X, Rong X, Chen Y and Su L:
Methylation-mediated loss of SFRP2 enhances invasiveness of
non-small cell lung cancer cells. Hum Exp Toxicol. 37:155–162.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yang Q, Huang T, Ye G, Wang B and Zhang X:
Methylation of SFRP2 gene as a promising noninvasive biomarker
using feces in colorectal cancer diagnosis: A systematic
meta-analysis. Sci Rep. 6:333392016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wu Q, Yin X, Zhao W, Xu W and Chen L:
Downregulation of SFRP2 facilitates cancer stemness and
radioresistance of glioma cells via activating Wnt/β-catenin
signaling. PLoS One. 16:e02608642021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Li C, Liu W, Lao Q, Lu H and Zhao Y:
Placenta autophagy is closely associated with preeclampsia. Aging
(Albany NY). 15:15657–15675. 2022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang P, Dai A, Alexenko AP, Liu Y,
Stephens AJ, Schulz LC, Schust DJ, Roberts RM and Ezashi T:
Abnormal oxidative stress responses in fibroblasts from
preeclampsia infants. PLoS One. 9:e1031102014. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang
X, Zhou Z, Shu G and Yin G: Wnt/β-catenin signalling: Function,
biological mechanisms, and therapeutic opportunities. Signal
Transduct Target Ther. 7:32022. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Dong S, Wu C, Hu J, Wang Q, Chen S, Wang Z
and Xiong W: Wnt5a promotes cytokines production and cell
proliferation in human hepatic stellate cells independent of
canonical Wnt pathway. Clin Lab. 61:537–547. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ku AT, Miao Q and Nguyen H: Monitoring
Wnt/β-catenin signaling in skin. Methods Mol Biol. 1481:127–140.
2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Krishnamurthy N and Kurzrock R: Targeting
the Wnt/beta-catenin pathway in cancer: Update on effectors and
inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhang Z, Wang X, Zhang L, Shi Y, Wang J
and Yan H: Wnt/β-catenin signaling pathway in trophoblasts and
abnormal activation in preeclampsia (review). Mol Med Rep.
16:1007–1013. 2017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pollheimer J, Loregger T, Sonderegger S,
Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P and Knöfler M:
Activation of the canonical wingless/T-cell factor signaling
pathway promotes invasive differentiation of human trophoblast. Am
J Pathol. 168:1134–1147. 2006. View Article : Google Scholar : PubMed/NCBI
|
36
|
Krivega M, Essahib W and Van de Velde H:
WNT3 and membrane-associated β-catenin regulate trophectoderm
lineage differentiation in human blastocysts. Mol Hum Reprod.
21:711–722. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Novakovic B, Rakyan V, Ng HK, Manuelpillai
U, Dewi C, Wong NC, Morley R, Down T, Beck S, Craig JM and Saffery
R: Specific tumour-associated methylation in normal human term
placenta and first-trimester cytotrophoblasts. Mol Hum Reprod.
14:547–554. 2008. View Article : Google Scholar : PubMed/NCBI
|
38
|
Cui H, Li H, Li QL, Chen J, Na Q and Liu
CX: Dickkopf-1 induces apoptosis in the JEG3 and BeWo trophoblast
tumor cell lines through the mitochondrial apoptosis pathway. Int J
Oncol. 46:2555–2561. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Luo JL, Kamata H and Karin M:
IKK/NF-kappaB signaling: balancing life and death-a new approach to
cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI
|
40
|
Chung MT, Lai HC, Sytwu HK, Yan MD, Shih
YL, Chang CC, Yu MH, Liu HS, Chu DW and Lin YW: SFRP1 and SFRP2
suppress the transformation and invasion abilities of cervical
cancer cells through Wnt signal pathway. Gynecol Oncol.
112:646–653. 2009. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhang Z, Li H, Zhang L, Jia L and Wang P:
Differential expression of β-catenin and Dickkopf-1 in the third
trimester placentas from normal and preeclamptic pregnancies: A
comparative study. Reprod Biol Endocrinol. 11:172013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang Y, Ran Y, Ma Y, Huang H, Chen Y and
Qi H: Elevated serum SFRP5 levels during preeclampsia and its
potential association with trophoblast dysfunction via
Wnt/β-catenin suppression. Reprod Sci. 29:163–172. 2022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hinduja A: Posterior reversible
encephalopathy syndrome: Clinical features and outcome. Front
Neurol. 11:712020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang B, Tan L, Yu Y, Wang B, Chen Z, Han
J, Li M, Chen J, Xiao T, Ambati BK, et al: Placenta-specific drug
delivery by trophoblast-targeted nanoparticles in mice.
Theranostics. 8:2765–2781. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bokslag A, van Weissenbruch M, Mol BW and
de Groot CJM: Preeclampsia; short and long-term consequences for
mother and neonate. Early Hum Dev. 102:47–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Benschop L, Duvekot JJ and Roeters van
Lennep JE: Future risk of cardiovascular disease risk factors and
events in women after a hypertensive disorder of pregnancy. Heart.
105:1273–1278. 2019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Wang XH, Xu S, Zhou XY, Zhao R, Lin Y, Cao
J, Zang WD, Tao H, Xu W, Li MQ, et al: Low chorionic villous
succinate accumulation associates with recurrent spontaneous
abortion risk. Nat Commun. 12:34282021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Li Y, Moretto-Zita M, Leon-Garcia S and
Parast MM: p63 inhibits extravillous trophoblast migration and
maintains cells in a cytotrophoblast stem cell-like state. Am J
Pathol. 184:3332–3343. 2014. View Article : Google Scholar : PubMed/NCBI
|
49
|
Wang B, Xu T, Li Y, Wang W, Lyu C, Luo D,
Yang Q, Ning N, Chen ZJ, Yan J, et al: Trophoblast H2S maintains
early pregnancy via regulating maternal-fetal interface immune
hemostasis. J Clin Endocrinol Metab. 105:e4275–e4289. 2020.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Rosini AM, Teixeira SC, Milian ICB, Silva
RJ, de Souza G, Luz LC, Gomes AO, Mineo JR, Mineo TWP, Ferro EAV
and Barbosa BF: LPS-mediated activation of TLR4 controls Toxoplasma
gondii growth in human trophoblast cell (BeWo) and human villous
explants in a dependent-manner of TRIF, MyD88, NF-κB and cytokines.
Tissue Cell. 78:1019072022. View Article : Google Scholar : PubMed/NCBI
|