Puerariae lobatae Radix ameliorates chronic kidney disease by reshaping gut microbiota and downregulating Wnt/β‑catenin signaling
- Authors:
- Peng Wu
- Jingwen Xue
- Zhangrui Zhu
- Yao Yu
- Qi Sun
- Ming Xie
- Benlin Wang
- Pengcheng Huang
- Zhengyuan Feng
- Jie Zhao
-
Affiliations: Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China - Published online on: May 14, 2024 https://doi.org/10.3892/mmr.2024.13241
- Article Number: 117
-
Copyright : © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
Cockwell P and Fisher LA: The global burden of chronic kidney disease. Lancet. 395:662–664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garofalo C, Borrelli S, Provenzano M, De Stefano T, Vita C, Chiodini P, Minutolo R, De Nicola L and Conte G: Dietary salt restriction in chronic kidney disease: A meta-analysis of randomized clinical trials. Nutrients. 10:7322018. View Article : Google Scholar : PubMed/NCBI | |
Kim SM and Jung JY: Nutritional management in patients with chronic kidney disease. Korean J Intern Med. 35:1279–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oppelaar JJ and Vogt L: Body Fluid-Independent effects of dietary salt consumption in chronic kidney disease. Nutrients. 11:27792019. View Article : Google Scholar : PubMed/NCBI | |
Yu HC, Burrell LM, Black MJ, Wu LL, Dilley RJ, Cooper ME and Johnston CI: Salt induces myocardial and renal fibrosis in normotensive and hypertensive rats. Circulation. 98:2621–2628. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, Nguyen C, Flodby P, Zhong Q, Krishnaveni MS, et al: Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 287:7026–7038. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zmora N, Suez J and Elinav E: You are what you eat: Diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 16:35–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
He FJ, Tan M, Ma Y and MacGregor GA: Salt reduction to prevent hypertension and cardiovascular disease: JACC State-of-the-Art review. J Am Coll Cardiol. 75:632–647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miranda PM, De Palma G, Serkis V, Lu J, Louis-Auguste MP, McCarville JL, Verdu EF, Collins SM and Bercik P: High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 6:572018. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Jin J, Su X, Yin X, Gao J, Wang X, Zhang S, Bu P, Wang M, Zhang Y, et al: Intestinal flora modulates blood pressure by regulating the synthesis of Intestinal-derived corticosterone in high salt-induced hypertension. Circ Res. 126:839–853. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Luo H, Wang J, Tang W, Lu J, Wu S, Xiong Z, Yang G, Chen Z, Lan T, et al: Enteric dysbiosis-linked gut barrier disruption triggers early renal injury induced by chronic high salt feeding in mice. Exp Mol Med. 49:e370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li HB, Xu ML, Xu XD, Tang YY, Jiang HL, Li L, Xia WJ, Cui N, Bai J, Dai ZM, et al: Faecalibacterium prausnitzii attenuates CKD via Butyrate-Renal GPR43 axis. Circ Res. 131:e120–e134. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kalantar-Zadeh K, Jafar TH, Nitsch D, Neuen BL and Perkovic V: Chronic kidney disease. Lancet. 398:786–802. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Liu Z, Wu P, Yue X, Lian Z, He P, Liu Y, Zhou R and Zhao J: Puerariae lobatae radix alleviates Pre-Eclampsia by remodeling gut microbiota and protecting the gut and placental barriers. Nutrients. 14:50252022. View Article : Google Scholar : PubMed/NCBI | |
Inker LA, Astor BC, Fox CH, Isakova T, Lash JP, Peralta CA, Kurella Tamura M and Feldman HI: KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 63:713–735. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Liu W, Feng Y, Hou H, Zhang Z, Yu Q, Zhou Y, Luo Q, Luo Y, Ouyang H, et al: Radix Puerariae thomsonii polysaccharide (RPP) improves inflammation and lipid peroxidation in alcohol and high-fat diet mice by regulating gut microbiota. Int J Biol Macromol. 209:858–870. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang SS, Zhang NN, Guo S, Liu SJ, Hou YF, Li S, Ho CT and Bai NS: Glycosides and flavonoids from the extract of Pueraria thomsonii Benth leaf alleviate type 2 diabetes in high-fat diet plus streptozotocin-induced mice by modulating the gut microbiota. Food Funct. 13:3931–3945. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Wu P, Cai Z, Fang Y, Zhou H, Lasanajak Y, Tang L, Ye L, Hou C and Zhao J: Puerariae lobatae Radix with chuanxiong Rhizoma for treatment of cerebral ischemic stroke by remodeling gut microbiota to regulate the brain-gut barriers. J Nutr Biochem. 65:101–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Avila-Carrasco L, García-Mayorga EA, Díaz-Avila DL, Garza-Veloz I, Martinez-Fierro ML and González-Mateo GT: Potential therapeutic effects of natural plant compounds in kidney disease. Molecules. 26:60962021. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Sheng L, Chen Y, Li Z, Wu H, Ma J, Zhang D, Chen X and Zhang S: Total coumarin derivates from Hydrangea paniculata attenuate renal injuries in cationized-BSA induced membranous nephropathy by inhibiting complement activation and interleukin 10-mediated interstitial fibrosis. Phytomedicine. 96:1538862022. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Huang M, Sun G, Lin Y, Lu D and Wu B: Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol. 13:10882942022. View Article : Google Scholar : PubMed/NCBI | |
National Research Council (US) Committee for the Update of the Guide for the care use of Laboratory Animals: Guide for the Care and Use of Laboratory Animals. 8th edition. National Academies Press (US); Washington (DC): 2011 | |
Li Z, Zhang X, Wu H, Ma Z, Liu X, Ma J, Zhang D, Sheng L, Chen X and Zhang S: Hydrangea paniculata coumarins attenuate experimental membranous nephritis by bidirectional interactions with the gut microbiota. Commun Biol. 6:11892023. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Qiu Y, Li K, Sun Q, Xie M, Huang P, Yu Y, Wang B, Xue J, Zhu Z, et al: Unraveling the impact of Lactobacillus spp. and other urinary microorganisms on the efficacy of mirabegron in female patients with overactive bladder. Front Cell Infect Microbiol. 12:10303152022. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Gao Y, Chen C, Xie M, Huang P, Sun Q, Zhou Z, Li B, Zhao J and Wu P: Deciphering the influence of urinary microbiota on FoxP3+ regulatory T cell infiltration and prognosis in Chinese patients with non-muscle-invasive bladder cancer. Human Cell. 35:511–521. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al: QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335–336. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ondov BD, Bergman NH and Phillippy AM: Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 12:3852011. View Article : Google Scholar : PubMed/NCBI | |
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS and Huttenhower C: Metagenomic biomarker discovery and explanation. Genome Biol. 12:R602011. View Article : Google Scholar : PubMed/NCBI | |
Aßhauer KP, Wemheuer B, Daniel R and Meinicke P: Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 31:2882–2884. 2015. View Article : Google Scholar : PubMed/NCBI | |
Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI | |
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S and Neurath MF: Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 12:1295–1309. 2017. View Article : Google Scholar : PubMed/NCBI | |
Manabe E, Ito S, Ohno Y, Tanaka T, Naito Y, Sasaki N, Asakura M, Masuyama T, Ishihara M and Tsujino T: Reduced lifespan of erythrocytes in Dahl/Salt sensitive rats is the cause of the renal proximal tubule damage. Sci Rep. 10:220232020. View Article : Google Scholar : PubMed/NCBI | |
Gunathilake M, Lee J, Choi IJ, Kim YI, Yoon J, Sul WJ, Kim JF and Kim J: Alterations in gastric microbial communities are associated with risk of gastric cancer in a Korean population: A Case-Control study. Cancers. 12:26192020. View Article : Google Scholar : PubMed/NCBI | |
Yan AW, Fouts DE, Brandl J, Stärkel P, Torralba M, Schott E, Tsukamoto H, Nelson KE, Brenner DA and Schnabl B: Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology. 53:96–105. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu LC, Shih YA, Wu LL, Lin YD, Kuo WT, Peng WH, Lu KS, Wei SC, Turner JR and Ni YH: Enteric dysbiosis promotes antibiotic-resistant bacterial infection: Systemic dissemination of resistant and commensal bacteria through epithelial transcytosis. Am J Physiol Gastrointest Liver Physiol. 307:G824–G835. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miao C, Zhu X, Wei X, Long M, Jiang L, Li C, Jin D and Du Y: Pro- and anti-fibrotic effects of vascular endothelial growth factor in chronic kidney diseases. Ren Fail. 44:881–892. 2022. View Article : Google Scholar : PubMed/NCBI | |
Keung WM, Lazo O, Kunze L and Vallee BL: Potentiation of the bioavailability of daidzin by an extract of Radix puerariae. Proc Natl Acad Sci USA. 93:4284–4288. 1996. View Article : Google Scholar : PubMed/NCBI | |
Chen F, Wen Q, Jiang J, Li HL, Tan YF, Li YH and Zeng NK: Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? J Ethnopharmacol. 179:253–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang HX and Wang YP: Gut Microbiota-brain Axis. Chin Med J (Engl). 129:2373–2380. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang T, Richards EM, Pepine CJ and Raizada MK: The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 14:442–456. 2018. View Article : Google Scholar : PubMed/NCBI | |
Belzer C and de Vos WM: Microbes inside-from diversity to function: The case of Akkermansia. ISME J. 6:1449–1458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Siles M, Enrich-Capó N, Aldeguer X, Sabat-Mir M, Duncan SH, Garcia-Gil LJ and Martinez-Medina M: Alterations in the abundance and Co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects. Front Cell Infect Microbiol. 8:2812018. View Article : Google Scholar : PubMed/NCBI | |
Wade H, Pan K, Duan Q, Kaluzny S, Pandey E, Fatumoju L, Saraswathi V, Wu R, Harris EN and Su Q: Akkermansia muciniphila and its membrane protein Ameliorates intestinal inflammatory stress and promotes epithelial wound healing via CREBH and miR-143/145. J Biomed Sci. 30:382023. View Article : Google Scholar : PubMed/NCBI | |
Li F, Wang M, Wang J, Li R and Zhang Y: Alterations to the gut microbiota and their correlation with inflammatory factors in chronic kidney disease. Front Cell Infect Microbiol. 9:2062019. View Article : Google Scholar : PubMed/NCBI | |
Keshavarz Azizi Raftar S, Ashrafian F, Yadegar A, Lari A, Moradi HR, Shahriary A, Azimirad M, Alavifard H, Mohsenifar Z, Davari M, et al: The protective effects of live and pasteurized Akkermansia muciniphila and its extracellular vesicles against HFD/CCl4-induced liver injury. Microbiol Spectr. 9:e00484212021. View Article : Google Scholar : PubMed/NCBI | |
Pei T, Hu R, Wang F, Yang S, Feng H, Li Q, Zhang J, Yan S, Ju L, He Z, et al: Akkermansia muciniphila ameliorates chronic kidney disease interstitial fibrosis via the gut-renal axis. Microb Pathog. 174:1058912023. View Article : Google Scholar : PubMed/NCBI | |
Lian Z, Xu Y, Wang C, Chen Y, Yuan L, Liu Z, Liu Y, He P, Cai Z and Zhao J: Gut microbiota-derived melatonin from Puerariae lobatae Radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol Res. 190:1067142023. View Article : Google Scholar : PubMed/NCBI | |
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM and Versalovic J: Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. mBio. 10:e01087–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ji H, Wang S, Liu H, Zhang W, Zhang D and Wang Y: Probiotic lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol. 9:19532018. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Chen X, Chen Z, Xiao H, Dong J, Li Y, Zeng X, Liu J, Wan G, Fan S and Cui M: Stable colonization of Akkermansia muciniphila educates host intestinal microecology and immunity to battle against inflammatory intestinal diseases. Exp Mol Med. 55:55–68. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cozzolino A, Vergalito F, Tremonte P, Iorizzo M, Lombardi SJ, Sorrentino E, Luongo D, Coppola R, Di Marco R and Succi M: Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with lactobacillus rhamnosus GG. Microorganisms. 8:1892020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, et al: Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut. 69:2131–2142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tian N, Li L, Ng JKC and Li PKT: The potential benefits and controversies of probiotics use in patients at different stages of chronic kidney disease. Nutrients. 14:40442022. View Article : Google Scholar : PubMed/NCBI | |
Mitrović M, Stanković-Popović V, Tolinački M, Golić N, Soković Bajić S, Veljović K, Nastasijević B, Soldatović I, Svorcan P and Dimković N: The Impact of synbiotic treatment on the levels of gut-derived uremic toxins, inflammation, and gut microbiome of chronic kidney disease Patients-A randomized trial. J Ren Nutr. 33:278–288. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yue SY, Zhou RR, Nan TG, Huang LQ and Yuan Y: Comparison of major chemical components in puerariae thomsonii radix and Puerariae lobatae radix. Zhongguo Zhong Yao Za Zhi. 47:2689–2697. 2022.(In Chinese). PubMed/NCBI | |
Luo Y, Xiao Y, Zhao J, Zhang H, Chen W and Zhai Q: The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. Int J Biol Macromol. 167:1329–1337. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu Z, Huang S, Li T, Li N, Han D, Zhang B, Xu ZZ, Zhang S, Pang J, Wang S, et al: Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome. 9:1842021. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Xu Y, Wu P, Zhou H, Lasanajak Y, Fang Y, Tang L, Ye L, Li X, Cai Z and Zhao J: Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res. 148:1044032019. View Article : Google Scholar : PubMed/NCBI | |
Lee J, d'Aigle J, Atadja L, Quaicoe V, Honarpisheh P, Ganesh BP, Hassan A, Graf J, Petrosino J, Putluri N, et al: Gut Microbiota-derived Short-chain fatty acids promote poststroke recovery in aged mice. Circ Res. 127:453–465. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J and Dai C: Wnt/β-Catenin-Promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 29:182–193. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schunk SJ, Floege J, Fliser D and Speer T: WNT-β-catenin signalling-a versatile player in kidney injury and repair. Nat Rev Nephrol. 17:172–184. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Takahashi-Yanaga F, Arioka M, Igawa K, Tomooka K, Yamaura K and Sasaguri T: Cardiac and renal protective effects of 2,5-dimethylcelecoxib in angiotensin II and high-salt-induced hypertension model mice. J Hypertens. 39:892–903. 2021. View Article : Google Scholar : PubMed/NCBI | |
Manning JA, Shah SS, Nikolic A, Henshall TL, Khew-Goodall Y and Kumar S: The ubiquitin ligase NEDD4-2/NEDD4L regulates both sodium homeostasis and fibrotic signaling to prevent end-stage renal disease. Cell Death Dis. 12:3982021. View Article : Google Scholar : PubMed/NCBI | |
Feng Q, Chen WD and Wang YD: Gut Microbiota: An integral moderator in health and disease. Front Microbiol. 9:1512018. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhao K-N and Vitetta L: Effects of intestinal microbial−elaborated butyrate on oncogenic signaling pathways. Nutrients. 11:10262019. View Article : Google Scholar : PubMed/NCBI | |
Benito I, Encío IJ, Milagro FI, Alfaro M, Martínez-Peñuela A, Barajas M and Marzo F: Microencapsulated bifidobacterium bifidum and lactobacillus gasseri in combination with quercetin inhibit colorectal cancer development in ApcMin/+ mice. Int J Mol Sci. 22:49062021. View Article : Google Scholar : PubMed/NCBI | |
Hiyama A, Yokoyama K, Nukaga T, Sakai D and Mochida J: A complex interaction between Wnt signaling and TNF-α in nucleus pulposus cells. Arthritis Res Ther. 15:R1892013. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Wang C, Hong X, Miao J, Liao Y, Hou FF, Zhou L and Liu Y: Wnt/β-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney Int. 95:815–829. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Zhang H, Hong Y, Ma M, Wan X and Cao C: Indoleamine-2,3-dioxygenase activates Wnt/β-catenin inducing kidney fibrosis after acute kidney injury. Gerontology. 67:611–619. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gelfand BD, Meller J, Pryor AW, Kahn M, Bortz PDS, Wamhoff BR and Blackman BR: Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression. Arterioscler Thromb Vasc Biol. 31:1625–1633. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiang FL, Fang M and Yutzey KE: Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun. 8:7122017. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Xu B, Zhou L, Tan RJ, Zhou D, Fu H, Li A, Hou FF and Liu Y: Wnt/β-catenin regulates blood pressure and kidney injury in rats. Biochim Biophys Acta Mol Basis Dis. 1865:1313–1322. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Dong MQ, Liu ZM, Xu M, Huang ZH, Liu HJ, Gao Y and Zhou WJ: A strategy of vascular-targeted therapy for liver fibrosis. Hepatology. 76:660–675. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Shi L, Xiao T, Xue J, Li J, Wang P, Wu L, Dai X, Ni X and Liu Q: microRNA-21, via the HIF-1α/VEGF signaling pathway, is involved in arsenite-induced hepatic fibrosis through aberrant cross-talk of hepatocytes and hepatic stellate cells. Chemosphere. 266:1291772021. View Article : Google Scholar : PubMed/NCBI | |
Jiang L, Yin M, Wei X, Liu J, Wang X, Niu C, Kang X, Xu J, Zhou Z, Sun S, et al: Bach1 represses Wnt/β-Catenin signaling and angiogenesis. Circ Res. 117:364–375. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T and Wang CC: Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev. 41:2489–2564. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hong F, Hong J, Wang L, Zhou Y, Liu D, Xu B, Yu X and Sheng L: Chronic exposure to nanoparticulate TiO2 causes renal fibrosis involving activation of the Wnt pathway in mouse kidney. J Agric Food Chem. 63:1639–1647. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Parsons CJ and Stefanovic B: Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol. 45:401–409. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yoo EJ, Oh KH, Piao H, Kang HJ, Jeong GW, Park H, Lee CJ, Ryu H, Yang SH, Kim MG, et al: Macrophage transcription factor TonEBP promotes systemic lupus erythematosus and kidney injury via damage-induced signaling pathways. Kidney Int. 104:163–180. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huynh C, Ryu J, Lee J, Inoki A and Inoki K: Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol. 19:102–122. 2023. View Article : Google Scholar : PubMed/NCBI |