1
|
American Diabetes Association, . 11.
Microvascular complications and foot care: Standards of medical
care in diabetes-2019. Diabetes Care. 42 (Suppl 1):S124–S138. 2019.
View Article : Google Scholar : PubMed/NCBI
|
2
|
O'Shaughnessy MM, Liu S, Montez-Rath ME,
Lafayette RA and Winkelmayer WC: Cause of kidney disease and
cardiovascular events in a national cohort of US patients with
end-stage renal disease on dialysis: A retrospective analysis. Eur
Heart J. 40:887–898. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kume S, Araki SI, Ugi S, Morino K, Koya D,
Nishio Y, Haneda M, Kashiwagi A and Maegawa H: Secular changes in
clinical manifestations of kidney disease among Japanese adults
with type 2 diabetes from 1996 to 2014. J Diabetes Investig.
10:1032–1040. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang G, Li M, Li Y and Mao Y:
Metabolomics: A new tool to reveal the nature of diabetic kidney
disease. Lab Med. 53:545–551. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Trifonova OP, Maslov DL, Balashova EE,
Lichtenberg S and Lokhov PG: Potential plasma metabolite biomarkers
of diabetic nephropathy: Untargeted metabolomics study. J Pers Med.
12:18892022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Colhoun HM and Marcovecchio ML: Biomarkers
of diabetic kidney disease. Diabetologia. 61:996–1011. 2018.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Levey AS, Stevens LA, Schmid CH, Zhang YL,
Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene
T, et al: A new equation to estimate glomerular filtration rate.
Ann Intern Med. 150:604–612. 2009. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rheinberger M and Böger CA: Diabetic
nephropathy: New insights into diagnosis, prevention and treatment.
Dtsch Med Wochenschr. 139:704–706. 2014.(In German). PubMed/NCBI
|
9
|
Cooper ME: Pathogenesis, prevention, and
treatment of diabetic nephropathy. Lancet. 352:213–219. 1998.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Panduru NM, Sandholm N, Forsblom C,
Saraheimo M, Dahlström EH, Thorn LM, Gordin D, Tolonen N, Wadén J,
Harjutsalo V, et al: Kidney injury molecule-1 and the loss of
kidney function in diabetic nephropathy: A likely causal link in
patients with type 1 diabetes. Diabetes Care. 38:1130–1137. 2015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Murray AM, Barzilay JI, Lovato JF,
Williamson JD, Miller ME, Marcovina S and Launer LJ; Action to
Control Cardiovascular Risk in Diabetes Memory in Diabetes
(ACCORD-MIND) Substudy Investigators, : Biomarkers of renal
function and cognitive impairment in patients with diabetes.
Diabetes Care. 34:1827–1832. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Kukla A, Issa N, Jackson S, Spong R,
Foster MC, Matas AJ, Mauer MS, Eckfeldt JH and Ibrahim HN: Cystatin
C enhances glomerular filtration rate estimating equations in
kidney transplant recipients. Am J Nephrol. 39:59–65. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Liao X, Zhu Y and Xue C: Diagnostic value
of serum cystatin C for diabetic nephropathy: A meta-analysis. BMC
Endocr Disord. 22:1492022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jou-Valencia D, Volbeda M, Zijlstra JG,
Kootstra-Ros JE, Moser J, van Meurs M and Koeze J: Longitudinal
NGAL and cystatin C plasma profiles present a high level of
heterogeneity in a mixed ICU population. BMC Nephrol. 25:432024.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Parving HH, Chaturvedi N, Viberti G and
Mogensen CE: Does microalbuminuria predict diabetic nephropathy?
Diabetes Care. 25:406–407. 2002. View Article : Google Scholar : PubMed/NCBI
|
16
|
Krolewski AS, Niewczas MA, Skupien J,
Gohda T, Smiles A, Eckfeldt JH, Doria A and Warram JH: Early
progressive renal decline precedes the onset of microalbuminuria
and its progression to macroalbuminuria. Diabetes Care. 37:226–234.
2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wishart DS: Metabolomics: The principles
and potential applications to transplantation. Am J Transplant.
5:2814–2820. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Muthubharathi BC, Gowripriya T and
Balamurugan K: Metabolomics: Small molecules that matter more. Mol
Omics. 17:210–229. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wishart DS: Emerging applications of
metabolomics in drug discovery and precision medicine. Nat Rev Drug
Discov. 15:473–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sas K, Karnovsky A, Michailidis G and
Pennathur S: Metabolomics and diabetes: Analytical and
computational approaches. Diabetes. 64:718–732. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Breit M and Weinberger KM: Metabolic
biomarkers for chronic kidney disease. Arch. Biochem Biophys.
589:62–80. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Du F, Virtue A, Wang H and Yang XF:
Metabolomic analyses for atherosclerosis, diabetes, and obesity.
Biomark Res. 1:172013. View Article : Google Scholar : PubMed/NCBI
|
23
|
van der Kloet FM, Tempels FW, Ismail N,
van der Heijden R, Kasper PT, Rojas-Cherto M, van Doorn R, Spijksma
G, Koek M, van der Greef J, et al: Discovery of early-stage
biomarkers for diabetic kidney disease using ms-based metabolomics
(FinnDiane study). Metabolomics. 8:109–119. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Balint L, Socaciu C, Socaciu AI, Vlad A,
Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan
M, et al: Quantitative, targeted analysis of gut microbiota derived
metabolites provides novel biomarkers of early diabetic kidney
disease in type 2 diabetes mellitus patients. Biomolecules.
13:10862023. View Article : Google Scholar : PubMed/NCBI
|
25
|
Niewczas MA, Sirich TL, Mathew AV, Skupien
J, Mohney RP, Warram JH, Smiles A, Huang X, Walker W, Byun J, et
al: Uremic solutes and risk of end-stage renal disease in type 2
diabetes: metabolomic study. Kidney Int. 85:1214–1224. 2014.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Sharma K, Zhang G, Hansen J, Bjornstad P,
Lee HJ, Menon R, Hejazi L, Liu JJ, Franzone A, Looker HC, et al:
Endogenous adenine mediates kidney injury in diabetic models and
predicts diabetic kidney disease in patients. J Clin Invest.
133:e1703412023. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wishart DS: Quantitative metabolomics
using NMR. TrAC, Trends Anal Chem. 27:228–237. 2008. View Article : Google Scholar
|
28
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary
MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH and
Dias DA: Review of recent developments in GC-MS approaches to
metabolomics-based research. Metabolomics. 14:1522018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Thomas SN, French D, Jannetto PJ, Rappold
BA and Clarke WA: Liquid chromatography-tandem mass spectrometry
for clinical diagnostics. Nat Rev Methods Primers. 2:962022.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang W and Ramautar R: CE-MS for
metabolomics: developments and applications in the period
2018–2020. Electrophoresis. 42:381–401. 2021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Patti GJ, Yanes O and Siuzdak G:
Innovation: metabolomics: The apogee of the omics trilogy. Nat Rev
Mol Cell Biol. 13:263–269. 2012. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cajka T and Fiehn O: Toward merging
untargeted and targeted methods in mass spectrometry-based
metabolomics and lipidomics. Anal Chem. 88:524–545. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wishart DS, Tzur D, Knox C, Eisner R, Guo
AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, et al: HMDB:
the Human Metabolome Database. Nucleic. Acids Res. 35:(Database
issue). D521–D526. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hansen J, Sealfon R, Menon R, Eadon MT,
Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, et al: A
reference tissue atlas for the human kidney. Sci Adv.
8:eabn49652022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hirakawa Y, Yoshioka K, Kojima K,
Yamashita Y, Shibahara T, Wada T, Nangaku M and Inagi R: Potential
progression biomarkers of diabetic kidney disease determined using
comprehensive machine learning analysis of non-targeted
metabolomics. Sci. Rep. 12:162872022.PubMed/NCBI
|
36
|
Yoshioka K, Hirakawa Y, Kurano M, Ube Y,
Ono Y, Kojima K, Iwama T, Kano K, Hasegawa S, Inoue T, et al:
Lysophosphatidylcholine mediates fast decline in kidney function in
diabetic kidney disease. Kidney Int. 101:510–526. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Vigers T, Vinovskis C, Li L-P, Prasad P,
Heerspink H, D'Alessandro A, Reisz JA, Piani F, Cherney DZ, van
Raalte DH, et al: Plasma levels of carboxylic acids are markers of
early kidney dysfunction in young people with type 1 diabetes.
Pediatr Nephrol. 38:193–202. 2023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lee J, Choi JY, Kwon YK, Lee D, Jung HY,
Ryu HM, Cho JH, Ryu DH, Kim YL and Hwang GS: Changes in serum
metabolites with the stage of chronic kidney disease: comparison of
diabetes and non-diabetes. Clin Chim Acta. 459:123–131. 2016.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Niewczas MA, Mathew AV, Croall S, Byun J,
Major M, Sabisetti VS, Smiles A, Bonventre JV, Pennathur S and
Krolewski AS: Circulating modified metabolites and a risk of ESRD
in patients with type 1 diabetes and chronic kidney disease.
Diabetes Care. 40:383–390. 2017. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pena MJ, de Zeeuw D, Andress D, Brennan
JJ, Correa-Rotter R, Coll B, Kohan DE, Makino H, Perkovic V,
Remuzzi G, et al: The effects of atrasentan on urinary metabolites
in patients with type 2 diabetes and nephropathy. Diabetes Obes
Metab. 19:749–753. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu JJ, Ghosh S, Kovalik J-P, Ching J,
Choi HW, Tavintharan S, Ong CN, Sum CF, Summers SA, Tai ES and Lim
SC: Profiling of plasma metabolites suggests altered mitochondrial
fuel usage and remodeling of sphingolipid metabolism in individuals
with type 2 diabetes and kidney disease. Kidney Int Rep. 2:470–480.
2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Saulnier PJ, Darshi M, Wheelock KM, Looker
HC, Fufaa GD, Knowler WC, Weil EJ, Tanamas SK, Lemley KV, Saito R,
et al: Urine metabolites are associated with glomerular lesions in
type 2 diabetes. Metabolomics. 14:842018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Colombo M, Valo E, McGurnaghan SJ,
Sandholm N, Blackbourn LAK, Dalton RN, Dunger D, Groop PH, McKeigue
PM, Forsblom C, et al: Biomarker panels associated with progression
of renal disease in type 1 diabetes. Diabetologia. 62:1616–1627.
2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Devi S, Nongkhlaw B, Limesh M, Pasanna RM,
Thomas T, Kuriyan R, Kurpad AV and Mukhopadhyay A: Acyl
ethanolamides in diabetes and diabetic nephropathy: novel targets
from untargeted plasma metabolomic profiles of South Asian Indian
men. Sci Rep. 9:181172019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Feng Q, Li Y, Yang Y and Feng J: Urine
metabolomics analysis in patients with normoalbuminuric diabetic
kidney disease. Front Physiol. 11:5787992020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Winther SA, Henriksen P, Vogt JK, Hansen
TH, Ahonen L, Suvitaival T, Hein Zobel E, Frimodt-Møller M, Hansen
TW, Hansen T, et al: Gut microbiota profile and selected plasma
metabolites in type 1 diabetes without and with stratification by
albuminuria. Diabetologia. 63:2713–2724. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tan YM, Gao Y, Teo G, Koh HWL, Tai ES,
Khoo CM, Choi KP, Zhou L and Choi H: Plasma metabolome and lipidome
associations with type 2 diabetes and diabetic nephropathy.
Metabolites. 11:2282021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fernandes Silva L, Vangipurapu J, Smith U
and Laakso M: Metabolite signature of albuminuria involves amino
acid pathways in 8661 finnish men without diabetes. J Clin
Endocrinol Metab. 106:143–152. 2021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mutter S, Valo E, Aittomäki V, Nybo K,
Raivonen L, Thorn LM, Forsblom C, Sandholm N, Würtz P and Groop PH:
Urinary metabolite profiling and risk of progression of diabetic
nephropathy in 2670 individuals with type 1 diabetes. Diabetologia.
65:140–149. 2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Lecamwasam A, Mansell T, Ekinci EI,
Saffery R and Dwyer KM: Blood plasma metabolites in
diabetes-associated chronic kidney disease: A focus on lipid
profiles and cardiovascular risk. Front Nutr. 9:8212092022.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Peng X, Wang X, Shao X, Wang Y, Feng S,
Wang C, Ye C, Chen J and Jiang H: Serum metabolomics benefits
discrimination kidney disease development in type 2 diabetes
patients. Front Med (Lausanne). 9:8193112022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Lucio-Gutiérrez JR, Cordero-Pérez P,
Farías-Navarro IC, Tijerina-Marquez R, Sánchez-Martínez C,
Ávila-Velázquez JL, García-Hernández PA, Náñez-Terreros H,
Coello-Bonilla J, Pérez-Trujillo M, et al: Using nuclear magnetic
resonance urine metabolomics to develop a prediction model of early
stages of renal disease in subjects with type 2 diabetes. J Pharm
Biomed Anal. 219:1148852022. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wieder C, Frainay C, Poupin N,
Rodríguez-Mier P, Vinson F, Cooke J, Lai RP, Bundy JG, Jourdan F
and Ebbels T: Pathway analysis in metabolomics: Recommendations for
the use of over-representation analysis. PLoS Comput Biol.
17:e10091052021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Shao M, Chen D, Wang Q, Guo F, Wei F,
Zhang W, Gan T, Luo Y, Fan X, Du P, et al: Canagliflozin regulates
metabolic reprogramming in diabetic kidney disease by inducing
fasting-like and aestivation-like metabolic patterns. Diabetologia.
67:738–754. 2024. View Article : Google Scholar : PubMed/NCBI
|
55
|
Sharma K, Karl B, Mathew AV, Gangoiti JA,
Wassel CL, Saito R, Pu M, Sharma S, You YH, Wang L, et al:
Metabolomics reveals signature of mitochondrial dysfunction in
diabetic kidney disease. J Am Soc Nephrol. 24:1901–1912. 2013.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Shao M, Lu H, Yang M, Liu Y, Yin P, Li G,
Wang Y, Chen L, Chen Q, Zhao C, et al: Serum and urine metabolomics
reveal potential biomarkers of T2DM patients with nephropathy. Ann
Transl Med. 8:1992020. View Article : Google Scholar : PubMed/NCBI
|
57
|
Caspi R, Billington R, Ferrer L, Foerster
H, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, Latendresse
M, Mueller LA, et al: The MetaCyc database of metabolic pathways
and enzymes and the BioCyc collection of pathway/genome databases.
Nucleic. Acids Res. 44:D471–D480. 2016. View Article : Google Scholar : PubMed/NCBI
|
58
|
Kanehisa M, Furumichi M, Tanabe M, Sato Y
and Morishima K: KEGG: New perspectives on genomes, pathways,
diseases and drugs. Nucleic Acids Res. 45:D353–D361. 2017.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Pang Z, Chong J, Zhou G, de Lima Morais
DA, Chang L, Barrette M, Gauthier C, Jacques PÉ, Li S and Xia J:
MetaboAnalyst 5.0: Narrowing the gap between raw spectra and
functional insights. Nucleic Acids Res. 49:W388–W396. 2021.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Jewison T, Su Y, Disfany FM, Liang Y, Knox
C, Maciejewski A, Poelzer J, Huynh J, Zhou Y, Arndt D, et al: SMPDB
2.0: Big improvements to the small molecule pathway database.
Nucleic Acids Res. 42:(Database issue). D478–D484. 2014. View Article : Google Scholar : PubMed/NCBI
|
61
|
Brunk E, Sahoo S, Zielinski DC, Altunkaya
A, Dräger A, Mih N, Gatto F, Nilsson A, Preciat Gonzalez GA, Aurich
MK, et al: Recon3D enables a three-dimensional view of gene
variation in human metabolism. Nat Biotechnol. 36:272–281. 2018.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Playdon MC, Sampson JN, Cross AJ, Sinha R,
Guertin KA, Moy KA, Rothman N, Irwin ML, Mayne ST,
Stolzenberg-Solomon R and Moore SC: Comparing metabolite profiles
of habitual diet in serum and urine. Am J Clin Nutr. 104:776–789.
2016. View Article : Google Scholar : PubMed/NCBI
|
63
|
Bar N, Korem T, Weissbrod O, Zeevi D,
Rothschild D, Leviatan S, Kosower N, Lotan-Pompan M, Weinberger A,
Le Roy CI, et al: A reference map of potential determinants for the
human serum metabolome. Nature. 588:135–140. 2020. View Article : Google Scholar : PubMed/NCBI
|
64
|
Rijo-Ferreira F and Takahashi JS: Genomics
of circadian rhythms in health and disease. Genome Med. 11:822019.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Acosta-Tlapalamatl M, Romo-Gómez C,
Anaya-Hernández A, Juárez-Santacruz L, Gaytán-Oyarzún JC,
Acevedo-Sandoval OA and García-Nieto E: Metabolomics: A new
approach in the evaluation of effects in human beings and wildlife
associated with environmental exposition to POPs. Toxics.
10:3802022. View Article : Google Scholar : PubMed/NCBI
|
66
|
Yu Z, Kastenmüller G, He Y, Belcredi P,
Möller G, Prehn C, Mendes J, Wahl S, Roemisch-Margl W, Ceglarek U,
et al: Differences between human plasma and serum metabolite
profiles. PLoS One. 6:e212302011. View Article : Google Scholar : PubMed/NCBI
|
67
|
de Vries R, Vreeken RJ and Cuyckens F:
High-throughput analysis of drugs and metabolites in biological
fluids using quan-qual approaches. LCGC Eur. 29:26–30. 2016.
|
68
|
Cordero-Pérez P, Sánchez-Martínez C,
García-Hernández PA and Saucedo AL: Metabolomics of the diabetic
nephropathy: Behind the fingerprint of development and progression
indicators. Nefrologia (Engl Ed). 40:585–596. 2020. View Article : Google Scholar : PubMed/NCBI
|
69
|
Pereira PR, Carrageta DF, Oliveira PF,
Rodrigues A, Alves MG and Monteiro MP: Metabolomics as a tool for
the early diagnosis and prognosis of diabetic kidney disease. Med
Res Rev. 42:1518–1544. 2022. View Article : Google Scholar : PubMed/NCBI
|
70
|
Jin Q and Ma RCW: Metabolomics in diabetes
and diabetic complications: Insights from epidemiological studies.
Cells. 10:28322021. View Article : Google Scholar : PubMed/NCBI
|
71
|
Abbiss H, Maker GL and Trengove RD:
Metabolomics approaches for the diagnosis and understanding of
kidney diseases. Metabolites. 9:342021. View Article : Google Scholar
|
72
|
Mordaunt D, Cox D and Fuller M:
Metabolomics to improve the diagnostic efficiency of inborn errors
of metabolism. Int J Mol Sci. 21:11952020. View Article : Google Scholar : PubMed/NCBI
|
73
|
Wang J, Sun Q, Gao Y, Xiang H, Zhang C,
Ding P, Wu T and Ji G: Metabolomics window into the diagnosis and
treatment of inflammatory bowel disease in recent 5 years. Int
Immunopharmacol. 113:1094722022. View Article : Google Scholar : PubMed/NCBI
|