Application and research progress of cordycepin in the treatment of tumours (Review)
- Authors:
- Ru He
- Wence Zhou
-
Affiliations: The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China - Published online on: July 8, 2024 https://doi.org/10.3892/mmr.2024.13285
- Article Number: 161
-
Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hu Y, Chen L, Tang Q, Wei W, Cao Y, Xie J and Ji J: Pan-cancer analysis revealed the significance of the GTPBP family in cancer. Aging (Albany NY). 14((6)): 2558–2573. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Azizi P, Vazirzadeh M, Aghaei-Zarch SM, Aghaei-Zarch F, Ghanavi J and Farnia P: Non-coding RNAs/DNMT3B axis in human cancers: From pathogenesis to clinical significance. J Transl Med. 21:6212023. View Article : Google Scholar : PubMed/NCBI | |
Sepp T, Ujvari B, Ewald PW, Thomas F and Giraudeau M: Urban environment and cancer in wildlife: Available evidence and future research avenues. Proc Biol Sci. 286:201824342019.PubMed/NCBI | |
Fane M and Weeraratna AT: How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 20:89–106. 2020. View Article : Google Scholar : PubMed/NCBI | |
Maomao C, He L, Dianqin S, Siyi H, Xinxin Y, Fan Y, Shaoli Z, Changfa X, Lin L, Ji P, et al: Current cancer burden in China: epidemiology, etiology, and prevention. Cancer Biol Med. 19:1121–1138. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chi Y, Wang D, Wang J, Yu W and Yang J: Long Non-Coding RNA in the pathogenesis of cancers. Cells. 8:10152019. View Article : Google Scholar : PubMed/NCBI | |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Miao K, Liu W, Xu J, Qian Z and Zhang Q: Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol. 14:12772432023. View Article : Google Scholar : PubMed/NCBI | |
Chen YC, Chen YH, Pan BS, Chang MM and Huang BM: Functional study of Cordyceps sinensis and cordycepin in male reproduction: A review. J Food Drug Anal. 25:197–205. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tuli HS, Sharma AK, Sandhu SS and Kashyap D: Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93:863–869. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yue K, Ye M, Zhou Z, Sun W and Lin X: The genus Cordyceps: A chemical and pharmacological review. J Pharm Pharmacol. 65:474–493. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kontogiannatos D, Koutrotsios G, Xekalaki S and Zervakis GI: Biomass and cordycepin production by the medicinal mushroom Cordyceps militaris-A review of various aspects and recent trends towards the exploitation of a valuable fungus. J Fungi (Basel). 7:9862021. View Article : Google Scholar : PubMed/NCBI | |
Khan M, Tania M, Zhang D and Chen H: Cordyceps Mushroom: A Potent Anticancer Nutraceutical. Open Nutraceuticals J. 3:179–183. 2010. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Liu H, Sun Y, Chen J, Li X, Xu J, Hu Y, Li Y, Deng Z and Zhong S: An effective and convenient synthesis of cordycepin from adenosine. Chem Pap. 72:149–160. 2018. View Article : Google Scholar | |
Ashraf SA, Elkhalifa AEO, Siddiqui AJ, Patel M, Awadelkareem AM, Snoussi M, Ashraf MS, Adnan M and Hadi S: Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules. 25:27352020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Yan H, Zeng B and Hu Z: Research progress on cordycepin synthesis and methods for enhancement of cordycepin production in cordyceps militaris. Bioengineering (Basel). 9:692022. View Article : Google Scholar : PubMed/NCBI | |
Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, et al: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol. 12:R1162011. View Article : Google Scholar : PubMed/NCBI | |
Jędrejko KJ, Lazur J and Muszyńska B: Cordyceps militaris: An overview of its chemical constituents in relation to biological activity. Foods. 10:26342021. View Article : Google Scholar : PubMed/NCBI | |
Xia Y, Luo F, Shang Y, Chen P, Lu Y and Wang C: Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin. Cell Chem Biol. 24:1479–1489.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Guo ZJ and Zhou XW: Chinese cordyceps: Bioactive components, antitumor effects and underlying mechanism-a review. Molecules. 27:65762022. View Article : Google Scholar : PubMed/NCBI | |
Ma YC, Huang P, Wang XL and Liu GQ: Multi-omics analysis unravels positive effect of rotenone on the cordycepin biosynthesis in submerged fermentation of Cordyceps militaris. Bioresour Technol. 373:1287052023. View Article : Google Scholar : PubMed/NCBI | |
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M and Vongsangnak W: Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol. 81:1029392023. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wu T, Huang A, Shen Y, Zhang X, Song W, Wang S and Ruan H: New insights into the biosynthesis of typical bioactive components in the traditional Chinese medicinal fungus cordyceps militaris. Front Bioeng Biotechnol. 9:8017212021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cheng J, Su Y, Li M, Wen J and Li S: Cordycepin induces M1/M2 macrophage polarization to attenuate the liver and lung damage and immunodeficiency in immature mice with sepsis via NF-κB/p65 inhibition. J Pharm Pharmacol. 74:227–235. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Wang X, Xi D, Mo J, Wang K, Luo S, Wei J, Ren Z, Pang H and Luo Y: Cordycepin Attenuates IFN-γ-Induced Macrophage IP-10 and Mig Expressions by Inhibiting STAT1 Activity in CFA-Induced Inflammation Mice Model. Inflammation. 43:752–764. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yang L and Fu J, Li T, Zhou B, Wang K, Wei C and Fu J: Comprehensive analysis, immune, and cordycepin regulation for SOX9 expression in pan-cancers and the matched healthy tissues. Front Immunol. 14:11499862023. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zheng X, Huang H, Feng C, Wu S, Chen R, Jiang H, Yuan M, Fu Y, Ying H, Zhou J and Jiang J: Cordycepin synergizes with CTLA-4 blockade to remodel the tumor microenvironment for enhanced cancer immunotherapy. Int Immunopharmacol. 124((Pt A)): 1107862023. View Article : Google Scholar : PubMed/NCBI | |
Khan MA and Tania M: Cordycepin and kinase inhibition in cancer. Drug Discov Today. 28:1034812023. View Article : Google Scholar : PubMed/NCBI | |
Cao C, Yang S and Zhou Z: The potential application of Cordyceps in metabolic-related disorders. Phytother Res. 34:295–305. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen YY, Chen CH, Lin WC, Tung CW, Chen YC, Yang SH, Huang BM and Chen RJ: The role of autophagy in anti-cancer and health promoting effects of cordycepin. Molecules. 26:49542021. View Article : Google Scholar : PubMed/NCBI | |
Deng Q, Li X, Fang C, Li X, Zhang J, Xi Q, Li Y and Zhang R: Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int Immunopharmacol. 107:1086952022. View Article : Google Scholar : PubMed/NCBI | |
Asl ER, Amini M, Najafi S, Mansoori B, Mokhtarzadeh A, Mohammadi A, Lotfinejad P, Bagheri M, Shirjang S, Lotfi Z, et al: Interplay between MAPK/ERK signaling pathway and MicroRNAs: A crucial mechanism regulating cancer cell metabolism and tumor progression. Life Sci. 278:1194992021. View Article : Google Scholar : PubMed/NCBI | |
Ullah R, Yin Q, Snell AH and Wan L: RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 85:123–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li K, Liu Y, Ding Y, Zhang Z, Feng J, Hu J, Chen J, Lian Z, Chen Y, Hu K, et al: BCL6 is regulated by the MAPK/ELK1 axis and promotes KRAS-driven lung cancer. J Clin Invest. 132:e1613082022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Qi G, Han F, Gai P, Peng J and Kong B: HMGB3 promotes the malignant phenotypes and stemness of epithelial ovarian cancer through the MAPK/ERK signaling pathway. Cell Commun Signal. 21:1442023. View Article : Google Scholar : PubMed/NCBI | |
Yuan J, Dong X, Yap J and Hu J: The MAPK and AMPK signalings: Interplay and implication in targeted cancer therapy. J Hematol Oncol. 13:1132020. View Article : Google Scholar : PubMed/NCBI | |
Barbosa R, Acevedo LA and Marmorstein R: The MEK/ERK network as a therapeutic target in human cancer. Mol Cancer Res. 19:361–374. 2021. View Article : Google Scholar : PubMed/NCBI | |
Greer PFC, Rich A and Coates DE: Effects of galectin-1 inhibitor OTX008 on oral squamous cell carcinoma cells in vitro and the role of AP-1 and the MAPK/ERK pathway. Arch Oral Biol. 134:1053352022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Mei X, Li Y, Yang W, Su X and Hu H: Cordycepin inhibits the proliferation and progression of NPC by targeting the MAPK/ERK and β-catenin pathways. Oncol Lett. 23:202022. View Article : Google Scholar : PubMed/NCBI | |
Xu JC, Zhou XP, Wang XA, Xu MD, Chen T, Chen TY, Zhou PH and Zhang YQ: Cordycepin Induces Apoptosis and G2/M Phase Arrest through the ERK pathways in esophageal cancer cells. J Cancer. 10:2415–2424. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li XY, Tao H, Jin C, DU ZY, Liao WF, Tang QJ and Ding K: Cordycepin inhibits pancreatic cancer cell growth in vitro and in vivo via targeting FGFR2 and blocking ERK signaling. Chin J Nat Med. 18:345–355. 2020.PubMed/NCBI | |
Tewari D, Patni P and Bishayee A, Sah AN and Bishayee A: Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 80:1–17. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Wei J and Liu P: Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 85:69–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Na L, Li Y and Chen L: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 10:542020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Li Z, Luo T and Shi H: Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed. 3:472022. View Article : Google Scholar : PubMed/NCBI | |
Ediriweera MK, Tennekoon KH and Samarakoon SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol. 59:147–160. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fattahi S, Amjadi-Moheb F, Tabaripour R, Ashrafi GH and Akhavan-Niaki H: PI3K/AKT/mTOR signaling in gastric cancer: Epigenetics and beyond. Life Sci. 262:1185132020. View Article : Google Scholar : PubMed/NCBI | |
Alves CL and Ditzel HJ: Drugging the PI3K/AKT/mTOR Pathway in ER+ Breast Cancer. Int J Mol Sci. 24:45222023. View Article : Google Scholar : PubMed/NCBI | |
Kim SO, Cha HJ, Park C, Lee H, Hong SH, Jeong SJ, Park SH, Kim GY, Leem SH, Jin CY, et al: Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci Trends. 13:324–333. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang MM, Pan BS, Wang CY and Huang BM: Cordycepin-induced unfolded protein response-dependent cell death, and AKT/MAPK-mediated drug resistance in mouse testicular tumor cells. Cancer Med. 8:3949–3964. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Li Y, Yang C, Chen D, Wang T, Liu T, Yan W, Su Z, Peng B and Ren X: Cordycepin reprogramming lipid metabolism to block metastasis and EMT via ERO1A/mTOR/SREBP1 axis in cholangiocarcinoma. Life Sci. 327:1216982023. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, et al: SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 38:350–365.e7. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodríguez C, Muñoz M, Contreras C and Prieto D: AMPK, metabolism, and vascular function. FEBS J. 288:3746–3771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Li H, Yuan M, Fan H and Cai Z: Role of AMPK in autophagy. Front Physiol. 13:10155002022. View Article : Google Scholar : PubMed/NCBI | |
Steinberg GR and Hardie DG: New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI | |
Keerthana CK, Rayginia TP, Shifana SC, Anto NP, Kalimuthu K, Isakov N and Anto RJ: The role of AMPK in cancer metabolism and its impact on the immunomodulation of the tumor microenvironment. Front Immunol. 14:11145822023. View Article : Google Scholar : PubMed/NCBI | |
Hsu CC, Peng D, Cai Z and Lin HK: AMPK signaling and its targeting in cancer progression and treatment. Semin Cancer Biol. 85:52–68. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liao XZ, Gao Y, Zhao HW, Zhou M, Chen DL, Tao LT, Guo W, Sun LL, Gu CY, Chen HR, et al: Cordycepin Reverses cisplatin resistance in non-small cell lung cancer by activating AMPK and Inhibiting AKT signaling pathway. Front Cell Dev Biol. 8:6092852021. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Yao X, Jiang Z, Wang Y, Zhang D, Chen X, Fan X, Xie C, Cheng J, Fu J and Leung EL: Cordycepin inhibits drug-resistance non-small cell lung cancer progression by activating AMPK signaling pathway. Pharmacol Res. 144:79–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoon SY, Lindroth AM, Kwon S, Park SJ and Park YJ: Adenosine derivatives from Cordyceps exert antitumor effects against ovarian cancer cells through ENT1-mediated transport, induction of AMPK signaling, and consequent autophagic cell death. Biomed Pharmacother. 153:1134912022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Beachy PA: Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol. 24:668–687. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sigafoos AN, Paradise BD and Fernandez-Zapico ME: Hedgehog/GLI Signaling Pathway: Transduction, regulation, and implications for disease. Cancers (Basel). 13:34102021. View Article : Google Scholar : PubMed/NCBI | |
Xia R, Xu M, Yang J and Ma X: The role of Hedgehog and Notch signaling pathway in cancer. Mol Biomed. 3:442022. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Qi M, Li L, Yuan Y, Wu X and Fu J: Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 11:2107–2116. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Li X, Qi M, Hu X, Cao F, Wu X and Fu J: Cordycepin inhibits growth and metastasis formation of MDA-MB-231 ×enografts in nude mice by modulating the hedgehog pathway. Int J Mol Sci. 23:103622022. View Article : Google Scholar : PubMed/NCBI | |
Albrecht LV, Tejeda-Muñoz N and De Robertis EM: Cell biology of canonical Wnt signaling. Annu Rev Cell Dev Biol. 37:369–389. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q and Xu H: Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol Cancer. 21:1442022. View Article : Google Scholar : PubMed/NCBI | |
Parsons MJ, Tammela T and Dow LE: WNT as a driver and dependency in cancer. Cancer Discov. 11:2413–2429. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gruszka AM, Valli D and Alcalay M: Wnt Signalling in Acute Myeloid Leukaemia. Cells. 8:14032019. View Article : Google Scholar : PubMed/NCBI | |
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R and Beghini A: Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel). 15:39312023. View Article : Google Scholar : PubMed/NCBI | |
Li SZ, Ren JW, Fei J, Zhang XD and Du RL: Cordycepin induces Bax dependent apoptosis in colorectal cancer cells. Mol Med Rep. 19:901–908. 2019.PubMed/NCBI | |
Zheng Q, Sun J, Li W, Li S and Zhang K: Cordycepin induces apoptosis in human tongue cancer cells in vitro and has antitumor effects in vivo. Arch Oral Biol. 118:1048462020. View Article : Google Scholar : PubMed/NCBI | |
Fong P, Ao CN, Tou KI, Huang KM, Cheong CC and Meng LR: Experimental and In Silico Analysis of Cordycepin and its Derivatives as Endometrial Cancer Treatment. Oncol Res. 27:237–251. 2019. View Article : Google Scholar : PubMed/NCBI | |
Min Y, Ding Y, Huang Q, Xu Y and Li J: Cordycepin inhibited the retinoblastoma cell proliferation, migration, and invasion as well as lung metastasis via modulating c-Myc/cyclin D1 pathway. Chem Biol Drug Des. 101:605–613. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Cao H, Fu S, Jia Z, Lu X, Cui Z and Yu D: Cordycepin enhances hyperthermia-induced apoptosis and cell cycle arrest by modulating the MAPK pathway in human lymphoma U937 cells. Mol Biol Rep. 49:8673–8683. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tania M, Shawon J, Saif K, Kiefer R, Khorram MS, Halim MA and Khan MA: Cordycepin Downregulates Cdk-2 to Interfere with Cell Cycle and Increases Apoptosis by Generating ROS in Cervical Cancer Cells: In vitro and in silico Study. Curr Cancer Drug Targets. 19:152–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang MM, Hong SY, Yang SH, Wu CC, Wang CY and Huang BM: Anti-Cancer Effect of Cordycepin on FGF9-Induced Testicular Tumorigenesis. Int J Mol Sci. 21:83362020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Yao S, Yang H, Liu S and Wang Y: Autophagy: Regulator of cell death. Cell Death Dis. 14:6482023. View Article : Google Scholar : PubMed/NCBI | |
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI | |
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
Binlateh T, Uppatcha N, Thepchai J, Pleungtuk Y, Noisa P, Hutamekalin P and Jitprasertwong P: Cordycepin attenuates migration and invasion of HSC-4 oral squamous carcinoma cells through autophagy-dependent FAK/Akt and MMP2/MMP9 suppression. J Dent Sci. 17:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jang HJ, Yang KE, Hwang IH, Huh YH, Kim DJ, Yoo HS, Park SJ and Jang IS: Cordycepin inhibits human ovarian cancer by inducing autophagy and apoptosis through Dickkopf-related protein 1/β-catenin signaling. Am J Transl Res. 11:6890–6906. 2019.PubMed/NCBI | |
Wang CY, Tsai SW, Chien HH, Chen TY, Sheu SY, So EC and Huang BM: Cordycepin inhibits human gestational choriocarcinoma cell growth by disrupting centrosome homeostasis. Drug Des Devel Ther. 14:2987–3000. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Feng C, Chen L, Zheng X, Fang W, Wu S, Gao X, Chen C, Yang J, Wu Y, et al: Single-cell RNA sequencing indicates cordycepin remodels the tumor immune microenvironment to enhance TIGIT blockade's anti-tumor effect in colon cancer. Int Immunopharmacol. 126:1112682024. View Article : Google Scholar : PubMed/NCBI | |
Panwong S, Wathikthinnakon M, Kaewkod T, Sawasdee N, Tragoolpua Y, Yenchitsomanus PT and Panya A: Cordycepin sensitizes cholangiocarcinoma cells to be killed by natural killer-92 (NK-92) cells. Molecules. 26:59732021. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Chen R, Fang W, Gao X, Ying H, Zheng X, Chen L and Jiang J: Synergistic effect of CD47 blockade in combination with cordycepin treatment against cancer. Front Pharmacol. 14:11443302023. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Khan MA, Du J, Cheng J, Tania M, Leung EL and Fu J: Cordycepin inhibits triple-negative breast cancer cell migration and invasion by regulating EMT-TFs SLUG, TWIST1, SNAIL1, and ZEB1. Front Oncol. 12:8985832022. View Article : Google Scholar : PubMed/NCBI | |
Lin YT, Liang SM, Wu YJ, Wu YJ, Lu YJ, Jan YJ, Ko BS, Chuang YJ, Shyue SK, Kuo CC and Liou JY: Cordycepin Suppresses endothelial cell proliferation, migration, angiogenesis, and tumor growth by regulating focal adhesion kinase and p53. Cancers (Basel). 11:1682019. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Chen W, Dai G and Huang Y: Cordycepin suppresses the migration and invasion of human liver cancer cells by downregulating the expression of CXCR4. Int J Mol Med. 45:141–150. 2020.PubMed/NCBI | |
Zhang X, Zhou X, Gao M, Lyu Y, Wang Y, Yang C, Piao Y and Ren X: Cordycepin inhibits the proliferation and migration of human gastric cancer cells by suppressing lipid metabolism via AMPK and MAPK activation. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 38:513–521. 2022.(In Chineae). PubMed/NCBI | |
Zhang Z, Li K, Zheng Z and Liu Y: Cordycepin inhibits colon cancer proliferation by suppressing MYC expression. BMC Pharmacol Toxicol. 23:122022. View Article : Google Scholar : PubMed/NCBI | |
Lee SC, Alaali L, Kwon H, Rigi M and Eberhart CG: Cordycepin (3′-Deoxyadenosine) suppresses heat shock protein 90 function and targets tumor growth in an adenosine deaminase-dependent manner. Cancers (Basel). 14:31222022. View Article : Google Scholar : PubMed/NCBI | |
Khuntawee W, Amornloetwattana R, Vongsangnak W, Namdee K, Yata T, Karttunen M and Wong-Ekkabut J: In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv. 11:8475–8484. 2021. View Article : Google Scholar : PubMed/NCBI | |
Levy A, Mercier O and Le Péchoux C: Indications and parameters around postoperative radiation therapy for lung cancer. J Clin Oncol. 40:556–566. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wirth A, Mikhaeel NG, Aleman BMP, Pinnix CC, Constine LS, Ricardi U, Illidge TM, Eich HT, Hoppe BS, Dabaja B, et al: Involved Site Radiation Therapy in Adult Lymphomas: An Overview of International Lymphoma Radiation Oncology Group Guidelines. Int J Radiat Oncol Biol Phys. 107:909–933. 2020. View Article : Google Scholar : PubMed/NCBI | |
Verma S, Young S, Boldt G, Blanchette P, Lock M, Helou J and Raphael J: Immunotherapy and radiation therapy sequencing in breast cancer: A systematic review. Int J Radiat Oncol Biol Phys. 118:1422–1434. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang R and Zhou PK: DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI | |
Lee YP, Huang WR, Wu WS, Wu YH, Ho SY, Wang YJ and Huang BM: Cordycepin enhances radiosensitivity to induce apoptosis through cell cycle arrest, caspase pathway and ER stress in MA-10 mouse Leydig tumor cells. Am J Cancer Res. 12:3601–3624. 2022.PubMed/NCBI | |
Lee YP, Lin CR, Chen SS, Chen RJ, Wu YH, Chen YH and Huang BM: Combination treatment of cordycepin and radiation induces MA-10 mouse Leydig tumor cell death via ROS accumulation and DNA damage. Am J Cancer Res. 13:1329–1346. 2023.PubMed/NCBI | |
Dong J, Li Y, Xiao H, Luo D, Zhang S, Zhu C, Jiang M, Cui M, Lu L and Fan S: Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol Appl Pharmacol. 364:12–21. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee D, Lee WY, Jung K, Kwon YS, Kim D, Hwang GS, Kim CE, Lee S and Kang KS: The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis. Biomolecules. 9:4142019. View Article : Google Scholar : PubMed/NCBI | |
Su NW, Wu SH, Chi CW, Tsai TH and Chen YJ: Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem Toxicol. 124:400–410. 2019. View Article : Google Scholar : PubMed/NCBI | |
Oh SS, Lee KW, Madhi H, Jeong JW, Park S, Kim M, Lee Y, Han HT, Hwangbo C, Yoo J and Kim KD: Cordycepin Resensitizes T24R2 cisplatin-resistant human bladder cancer cells to cisplatin by inactivating Ets-1 Dependent MDR1 transcription. Int J Mol Sci. 21:17102020. View Article : Google Scholar : PubMed/NCBI | |
Li HB, Chen JK, Su ZX, Jin QL, Deng LW, Huang G and Shen JN: Cordycepin augments the chemosensitivity of osteosarcoma to cisplatin by activating AMPK and suppressing the AKT signaling pathway. Cancer Cell Int. 21:7062021. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, Chen DL, Zhou M, Zheng ZS, He MF, Huang S, Liao XZ and Zhang JX: Cordycepin enhances the chemosensitivity of esophageal cancer cells to cisplatin by inducing the activation of AMPK and suppressing the AKT signaling pathway. Cell Death Dis. 11:8662020. View Article : Google Scholar : PubMed/NCBI | |
Zheng SX, Chen J, Zhuang BB, Zhang Q, Shi SS and Zhang GL: Cordycepin improves sensitivity to temozolomide in glioblastoma cells by down-regulating MYC. J Cancer Res Clin Oncol. 149:16055–16067. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zhuang YD, Zhang Q, Liu S, Zhuang BB, Wang CH and Liang RS: Exploring the mechanism of cordycepin combined with doxorubicin in treating glioblastoma based on network pharmacology and biological verification. PeerJ. 10:e129422022. View Article : Google Scholar : PubMed/NCBI | |
Liao X, Tao L, Guo W, Wu ZX, Du H, Wang J, Zhang J, Chen H, Chen ZS, Lin L and Sun L: Combination of cordycepin and apatinib synergistically inhibits NSCLC Cells by Down-Regulating VEGF/PI3K/Akt signaling pathway. Front Oncol. 10:17322020. View Article : Google Scholar : PubMed/NCBI | |
Woolley VC, Teakle GR, Prince G, de Moor CH and Chandler D: Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J Invertebr Pathol. 177:1074802020. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Yu Y, Zhang J, Li H, Weng Q, Jiang S, Tian S, Xu T, Hu S, Yang G, et al: Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the AMP-Activated protein kinase signaling pathway. Hepatology. 74:686–703. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan L, Song X, Ren Y, Wang M, Guo C, Guo D, Gu Y, Li Y, Cao Z and Deng Y: Anti-inflammatory effects of cordycepin: A review. Phytother Res. Oct 8–2020.(Epub ahead of print). | |
Khan MA and Tania M: Cordycepin in anticancer research: Molecular mechanism of therapeutic effects. Curr Med Chem. 27:983–996. 2020. View Article : Google Scholar : PubMed/NCBI | |
Seong da B, Hong S, Muthusami S, Kim WD, Yu JR and Park WY: Cordycepin increases radiosensitivity in cervical cancer cells by overriding or prolonging radiation-induced G2/M arrest. Eur J Pharmacol. 771:77–83. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dalla Rosa L, da Silva AS, Gressler LT, Oliveira CB, Dambrós MG, Miletti LC, França RT, Lopes ST, Samara YN, da Veiga ML and Monteiro SG: Cordycepin (3′-deoxyadenosine) pentostatin (deoxycoformycin) combination treatment of mice experimentally infected with Trypanosoma evansi. Parasitology. 140:663–671. 2013. View Article : Google Scholar : PubMed/NCBI | |
Qin P, Li X, Yang H, Wang ZY and Lu D: Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules. 24:22312019. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Luo J, Jiang W, Chen L, Miao L and Han C: Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother Res. 37:3839–3858. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee JB, Adrower C, Qin C, Fischer PM, de Moor CH and Gershkovich P: Development of cordycepin formulations for preclinical and clinical studies. AAPS PharmSciTech. 18:3219–3226. 2017. View Article : Google Scholar : PubMed/NCBI | |
Posadino AM, Giordo R, Pintus G, Mohammed SA, Orhan IE, Fokou PVT, Sharopov F, Adetunji CO, Gulsunoglu-Konuskan Z, Ydyrys A, et al: Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed Pharmacother. 163:1148662023. View Article : Google Scholar : PubMed/NCBI | |
Talman AM, Clain J, Duval R, Ménard R and Ariey F: Artemisinin bioactivity and resistance in malaria parasites. Trends Parasitol. 35:953–963. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI |