1
|
Little PJ, Askew CD, Xu S and Kamato D:
Endothelial dysfunction and cardiovascular disease: History and
analysis of the clinical utility of the relationship. Biomedicines.
96:6992021. View Article : Google Scholar
|
2
|
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W,
Yu J, Peng T, Chen X, Li L and Xie W: Focus on ferroptosis,
pyroptosis, apoptosis and autophagy of vascular endothelial cells
to the strategic targets for the treatment of atherosclerosis. Arch
Biochem Biophys. 715:1090982022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J,
Ma XL and Wang Y: Endothelial autophagy in coronary microvascular
dysfunction and cardiovascular disease. Cells. 11:20812022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Mameli E, Martello A and Caporali A:
Autophagy at the interface of endothelial cell homeostasis and
vascular disease. FEBS J. 28911:2976–2991. 2021.
|
5
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H,
Wu H and Gong G: Mitochondrial autophagy: Molecular mechanisms and
implications for cardiovascular disease. Cell Death Dis.
135:4442022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhou X, Yang J, Zhou M, Zhang Y, Liu Y,
Hou P, Zeng X, Yi L and Mi M: Resveratrol attenuates endothelial
oxidative injury by inducing autophagy via the activation of
transcription factor EB. Nutr Metab (Lond). 16:422019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Peng Z, Zhan H, Shao Y, Xiong Y, Zeng L,
Zhang C, Liu Z, Huang Z, Su H and Yang Z: 13-methylberberine
improves endothelial dysfunction by inhibiting NLRP3 inflammasome
activation via autophagy induction in human umbilical vein
endothelial cells. Chin Med. 15:82020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang L, He J, Wang J, Liu J, Chen Z, Deng
B, Wei L, Wu H, Liang B, Li H, et al: Knockout RAGE alleviates
cardiac fibrosis through repressing endothelial-to-mesenchymal
transition (EndMT) mediated by autophagy. Cell Death Dis.
12:4702021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Niu C, Chen Z, Kim KT, Sun J, Xue M, Chen
G, Li S, Shen Y, Zhu Z, Wang X, et al: Metformin alleviates
hyperglycemia-induced endothelial impairment by downregulating
autophagy via the Hedgehog pathway. Autophagy. 15:843–870. 2019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ren H, Dai R, Nik Nabi WN, Xi Z, Wang F
and Xu H: Unveiling the dual role of autophagy in vascular
remodelling and its related diseases. Biomed Pharmacother.
168:1156432023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhao S, Wang H, Xu H, Tan Y, Zhang C, Zeng
Q, Liu L and Qu S: Targeting the microRNAs in exosome: A potential
therapeutic strategy for alleviation of diabetes-related
cardiovascular complication. Pharmacol Res. 173:1058682021.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Wronska A: The role of microRNA in the
development, diagnosis, and treatment of cardiovascular disease:
Recent developments. J Pharmacol Exp Ther. 3841:123–132. 2023.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Wojciechowska A, Osiak A and
Kozar-Kamińska K: MicroRNA in cardiovascular biology and disease.
Adv Clin Exp Med. 26:868–874. 2017. View Article : Google Scholar
|
14
|
Doebele C, Bonauer A, Fischer A, Scholz A,
Reiss Y, Urbich C, Hofmann WK, Zeiher AM and Dimmeler S: Members of
the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic
function in endothelial cells. Blood. 115:4944–4950. 2010.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Bonauer A, Carmona G, Iwasaki M, Mione M,
Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, et
al: MicroRNA-92a controls angiogenesis and functional recovery of
ischemic tissues in mice. Science. 324:1710–1713. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Li M, Guan X, Sun Y, Mi J, Shu X, Liu F
and Li C: miR-92a family and their target genes in tumorigenesis
and metastasis. Exp Cell Res. 323:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wu C, Huang RT, Kuo CH, Kumar S, Kim CW,
Lin YC, Chen YJ, Birukova A, Birukov KG, Dulin NO, et al:
Mechanosensitive PPAP2B regulates endothelial responses to
atherorelevant hemodynamic forces. Circ Res. 174:e41–e53.
2015.PubMed/NCBI
|
18
|
Kumar S, Kim CW, Simmons RD and Jo H: Role
of flow-sensitive microRNAs in endothelial dysfunction and
atherosclerosis: Mechanosensitive athero-miRs. Arterioscler Thromb
Vasc Biol. 34:2206–2216. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang Y, Cheng J, Chen F, Wu C, Zhang J,
Ren X, Pan Y, Nie B, Li Q and Li Y: Circulating endothelial
microparticles and miR-92a in acute myocardial infarction. Biosci
Rep. 37:BSR201700472017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Carena MC, Badi I, Polkinghorne M,
Akoumianakis I, Psarros C, Wahome E, Kotanidis CP, Akawi N,
ntonopoulos AS, Chauhan J, et al: Role of human epicardial adipose
tissue-derived miR-92a-3p in myocardial redox state. J Am Coll
Cardiol. 82:317–332. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu Y, Li Q, Hosen MR, Zietzer A, Flender
A, Levermann P, Schmitz T, Fruhwald D, Goody P, Nickenig G, et al:
Atherosclerotic conditions promote the packaging of functional
MicroRNA-92a-3p into endothelial microvesicles. Circ Res.
124:575–587. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Parahuleva MS, Lipps C, Parviz B,
Holschermann H, Schieffer B, Schulz R and Euler G: MicroRNA
expression profile of human advanced coronary atherosclerotic
plaques. Sci Rep. 8:78232018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang H, Xie Y, Salvador AM, Zhang Z, Chen
K, Li G and Xiao J: Exosomes: Multifaceted messengers in
atherosclerosis. Curr Atheroscler Rep. 22:572020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Park CS, Kim I, Oh GC, Han JK, Yang HM,
Park KW, Cho HJ, Kang HJ, Koo BK, Chung WY, et al: Diagnostic
utility and pathogenic role of circulating MicroRNAs in vasospastic
angina. J Clin Med. 9:13132020. View Article : Google Scholar : PubMed/NCBI
|
25
|
Alexandru N, Constantin A, Nemecz M,
Comarita IK, Vilcu A, Procopciuc A, Tanko G and Georgescu A:
Hypertension associated with hyperlipidemia induced different
MicroRNA expression profiles in plasma, platelets, and
Platelet-derived microvesicles; Effects of endothelial progenitor
cell therapy. Front Med (Lausanne). 6:2802019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang W, Li Z, Zheng Y, Yan M, Cui Y and
Jiang J: Circulating microRNA-92a level predicts acute coronary
syndrome in diabetic patients with coronary heart disease. Lipids
Health Dis. 18:222019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wiese CB, Zhong J, Xu ZQ, Zhang Y, Ramirez
Solano MA, Zhu W, Linton MF, Sheng Q, Kon V and Vickers KC: Dual
inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal
injury-associated atherosclerosis. Atherosclerosis. 282:121–131.
2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shang F, Wang SC, Hsu CY, Miao Y, Martin
M, Yin Y, Wu CC, Wang YT, Wu G, Chien S, et al: MicroRNA-92a
Mediates endothelial dysfunction in CKD. J Am Soc Nephrol.
2811:3251–3261. 2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 254:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang P, Luo XL, Mo GJ, Tao XJ, Shen F and
Ou HS: The effects of miR-24 on proliferation, metastasis, and
autophagy of human umbilical vein endothelial cells. Shandong Med
J. 57:24–27. 2017.
|
31
|
Feng Y, Yang H, Yue Y and Tian F:
MicroRNAs and target genes in epileptogenesis. Epilepsia.
61:2086–2096. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Seok H, Ham J, Jang ES and Chi SW:
MicroRNA target recognition: Insights from Transcriptome-Wide
Non-canonical interactions. Mol Cells. 39:375–381. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Long J, Wang J, Dong Y, Yang J, Xie G and
Tong Y: Prolyl isomerase Pin1 promotes autophagy and cancer cell
viability through activating FoxO3 signalling. Cell Signal.
113:1109402024. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liang L, Hui K, Hu C, Wen Y, Yang S, Zhu
P, Wang L, Xia Y, Qiao Y, Sun W, et al: Autophagy inhibition
potentiates the anti-angiogenic property of multikinase inhibitor
anlotinib through JAK2/STAT3/VEGFA signaling in non-small cell lung
cancer cells. J Exp Clin Cancer Res. 381:712019. View Article : Google Scholar
|
35
|
Yang Z, Huang C, Wen X, Liu W, Huang X, Li
Y, Zang J, Weng Z, Lu D, Tsang CK, et al: Circular RNA circ-FoxO3
attenuates blood-brain barrier damage by inducing autophagy during
ischemia/reperfusion. Mol Ther. 303:1275–1287. 2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhang S, Tian W, Duan X, Zhang Q, Cao L,
Liu C, Li G, Wang Z, Zhang J, Li J, et al: Melatonin attenuates
diabetic cardiomyopathy by increasing autophagy of cardiomyocytes
via regulation of VEGF-B/GRP78/PERK signaling pathway. Cardiovasc
Diabetol. 231:192024. View Article : Google Scholar : PubMed/NCBI
|
37
|
Zhou C, Shen L, Mao L, Wang B, Li Y and Yu
H: miR-92a is upregulated in cervical cancer and promotes cell
proliferation and invasion by targeting FBXW7. Biochem Biophys Res
Commun. 4581:63–69. 2015. View Article : Google Scholar
|
38
|
Wang Y, Song X, Li Z, Liu N, Yan Y, Li T,
Sun W, Guan Y, Li M, Yang Y, et al: MicroRNA-103 protects coronary
artery endothelial cells against H2O2-Induced
oxidative stress via BNIP3-mediated End-stage autophagy and
antipyroptosis pathways. Oxid Med Cell Longev.
2020:83513422020.PubMed/NCBI
|
39
|
Xu Q, Meng S, Liu B, Li MQ, Li Y, Fang L
and Li YG: MicroRNA-130a regulates autophagy of endothelial
progenitor cells through Runx3. Clin Exp Pharmacol Physiol.
41:351–357. 2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Lu Z, Shen J, Chen X, Ruan Z, Cai W, Cai
S, Li M, Yang Y, Mo J, Mo G, et al: Propofol upregulates
MicroRNA-30b to inhibit excessive autophagy and apoptosis and
attenuates Ischemia/Reperfusion injury in vitro and in patients.
Oxid Med Cell Longev. 2022:21098912022. View Article : Google Scholar : PubMed/NCBI
|
41
|
Wu D, Liang M, Dang H, Fang F, Xu F and
Liu C: Hydrogen protects against hyperoxia-induced apoptosis in
type II alveolar epithelial cells via activation of PI3K/Akt/Foxo3a
signaling pathway. Biochem Biophys Res Commun. 4952:1620–1627.
2018. View Article : Google Scholar
|
42
|
Shi XY, Ding W, Li TQ, Zhang YX and Zhao
SC: Histone deacetylase (HDAC) inhibitor, suberoylanilide
hydroxamic Acid (SAHA), induces apoptosis in prostate cancer cell
lines via the Akt/FOXO3a signaling pathway. Med Sci Monit.
23:5793–5802. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li
Z, Zhao Y, Ma J, Lin X, Luo R, et al: Autophagy induction promoted
by m6A reader YTHDF3 through translation upregulation of FOXO3
mRNA. Nat Commun. 13:58452022. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhao C, Li X, Sun G, Liu P, Kong K, Chen
X, Yang F and Wang X: CircFOXO3 protects against osteoarthritis by
targeting its parental gene FOXO3 and activating PI3K/AKT-mediated
autophagy. Cell Death Dis. 13:9322022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Nho RS and Hergert P: FoxO3a and disease
progression. World J Biol Chem. 5:346–354. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sun L, Zhao M, Wang Y, Liu A, Lv M, Li Y,
Yang X and Wu Z: Neuroprotective effects of miR-27a against
traumatic brain injury via suppressing FoxO3a-mediated neuronal
autophagy. Biochem Biophys Res Commun. 482:1141–1147. 2017.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Li F, Long TY, Bi SS, Sheikh SA and Zhang
CL: circPAN3 exerts a profibrotic role via sponging miR-221 through
FoxO3/ATG7-activated autophagy in a rat model of myocardial
infarction. Life Sci. 257:1180152020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Song L, Zhou F, Cheng L, Hu M, He Y, Zhang
B, Liao D and Xu Z: MicroRNA-34a suppresses autophagy in alveolar
type II epithelial cells in acute lung injury by inhibiting FoxO3
expression. Inflammation. 40:927–936. 2017. View Article : Google Scholar : PubMed/NCBI
|
49
|
Long C, Cen S, Zhong Z, Zhou C and Zhong
G: FOXO3 is targeted by miR-223-3p and promotes osteogenic
differentiation of bone marrow mesenchymal stem cells by enhancing
autophagy. Hum Cell. 34:14–27. 2021. View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhou Y, Wei W, Shen J, Lu L, Lu T, Wang H
and Xue X: Alisol A 24-acetate protects oxygen-glucose
deprivation-induced brain microvascular endothelial cells against
apoptosis through miR-92a-3p inhibition by targeting the B-cell
lymphoma-2 gene. Pharm Biol. 59:513–524. 2021. View Article : Google Scholar : PubMed/NCBI
|