Crosstalk of methylation and tamoxifen in breast cancer (Review)
- Authors:
- Jin Shen
- Yan He
- Shengpeng Li
- Huimin Chen
-
Affiliations: Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China, Department of Neurology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China - Published online on: August 9, 2024 https://doi.org/10.3892/mmr.2024.13304
- Article Number: 180
-
Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Katsura C, Ogunmwonyi I, Kankam HKN and Saha S: Breast cancer: Presentation, investigation and management. Br J Hosp Med (Lond). 83:1–7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Singh H: Role of molecular targeted therapeutic drugs in treatment of breast cancer: A review article. Global Med Genet. 10:79–86. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Wu Y, Ma F, Kaklamani V and Xu B: Advances in medical treatment of breast cancer in 2022. Cancer Innov. 2:1–17. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee A: Long term effects of modern breast cancer surgery. Gland Surg. 7:366–370. 2018. View Article : Google Scholar : PubMed/NCBI | |
Haque W, Butler EB and Teh BS: Personalized radiation therapy for breast cancer. Curr Oncol. 31:1588–1599. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bartsch R and Bergen E: SABCS 2017: Update on chemotherapy, targeted therapy, and immunotherapy. Memo. 11:204–207. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi L, Chen Z and Wang X: ASCO 2018: Recent advances in endocrine therapy for advanced breast cancer. Chin J Clin Oncol. 45:919–921. 2018. | |
Bhave MA and Henry NL: Extended endocrine therapy: Is 5 years enough? Curr Oncol Rep. 19:162017. View Article : Google Scholar : PubMed/NCBI | |
Barroso-Sousa R, Silva DDAFR, Alessi JVM and Mano MS: Neoadjuvant endocrine therapy in breast cancer: Current role and future perspectives. Ecancermedicalscience. 10:6092016. View Article : Google Scholar : PubMed/NCBI | |
Jordan VC and O'Malley BW: Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol. 25:5815–5824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xu J, Shi Y, Sun Q, Zhang Q and Guan X: The novel role of miRNAs for tamoxifen resistance in human breast cancer. Cell Mol Life Sci. 72:2575–2584. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ring A and Dowsett M: Mechanisms of tamoxifen resistance. Endocr Relat Cancer. 11:643–658. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Deng K, Huang J, Zeng R and Zuo J: Progress in the understanding of the mechanism of tamoxifen resistance in breast cancer. Front Pharmacol. 11:5929122020. View Article : Google Scholar : PubMed/NCBI | |
Chang M: Tamoxifen resistance in breast cancer. Biomol Ther (Seoul). 20:256–267. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chen Y: Recent advances in methylation: A guide for selecting methylation reagents. Chemistry. 25:3405–3439. 2019. View Article : Google Scholar : PubMed/NCBI | |
Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB and Goossens L: DNA methylation targeting: The DNMT/HMT crosstalk challenge. Biomolecules. 7:32017. View Article : Google Scholar : PubMed/NCBI | |
Jahangiri R, Jamialahmadi K, Gharib M, Emami Razavi A and Mosaffa F: Expression and clinicopathological significance of DNA methyltransferase 1, 3A and 3B in tamoxifen-treated breast cancer patients. Gene. 685:24–31. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jahangiri R, Mosaffa F, Emami Razavi A, Teimoori-Toolabi L and Jamialahmadi K: Altered DNA methyltransferases promoter methylation and mRNA expression are associated with tamoxifen response in breast tumors. J Cell Physiol. 233:7305–7319. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lin X, Li J, Yin G, Zhao Q, Elias D, Lykkesfeldt AE, Stenvang J, Brünner N, Wang J, Yang H, et al: Integrative analyses of gene expression and DNA methylation profiles in breast cancer cell line models of tamoxifen-resistance indicate a potential role of cells with stem-like properties. Breast Cancer Res. 15:R1192013. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Hong T, Wang S, Mo J, Tian T and Zhou X: Epigenetic modification of nucleic acids: From basic studies to medical applications. Chem Soc Rev. 46:2844–2872. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Davis IJ and Liu P: Regulation of EWSR1-FLI1 function by Post-Transcriptional and Post-Translational modifications. Cancers (Basel). 15:3822023. View Article : Google Scholar : PubMed/NCBI | |
Zaib S, Rana N and Khan I: Histone modifications and their role in epigenetics of cancer. Curr Med Chem. 29:2399–2411. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu WW, Zheng SQ, Li T, Fei YF, Wang C, Zhang S, Wang F, Jiang GM and Wang H: RNA modifications in cellular metabolism: Implications for metabolism-targeted therapy and immunotherapy. Signal Transduct Target Ther. 9:702024. View Article : Google Scholar : PubMed/NCBI | |
Song T, Lv S, Li N, Zhao X, Ma X, Yan Y, Wang W and Sun L: Versatile functions of RNA m6A machinery on chromatin. J Mol Cell Biol. 14:mjac0112022. View Article : Google Scholar : PubMed/NCBI | |
Singh V, Ram M, Kumar R, Prasad R, Roy BK and Singh KK: Phosphorylation: Implications in Cancer. Protein J. 36:1–6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S and Weng J: Targeting protein modifications in metabolic diseases: Molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 8:2202023. View Article : Google Scholar : PubMed/NCBI | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Małecki JM, Davydova E and Falnes P: Protein methylation in mitochondria. J Biol Chem. 298:1017912022. View Article : Google Scholar : PubMed/NCBI | |
Newman AC and Maddocks ODK: One-carbon metabolism in cancer. Br J Cancer. 116:1499–1504. 2017. View Article : Google Scholar : PubMed/NCBI | |
Froese DS, Fowler B and Baumgartner MR: Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J Inherit Metab Dis. 42:673–685. 2019. View Article : Google Scholar : PubMed/NCBI | |
Raghubeer S and Matsha TE: Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients. 13:45622021. View Article : Google Scholar : PubMed/NCBI | |
Nishiyama A and Nakanishi M: Navigating the DNA methylation landscape of cancer. Trends Genet. 37:1012–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gros C, Fahy J, Halby L, Dufau I, Erdmann A, Gregoire JM, Ausseil F, Vispé S and Arimondo PB: DNA methylation inhibitors in cancer: Recent and future approaches. Biochimie. 94:2280–2296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kulis M and Esteller M: DNA methylation and cancer. Adv Genet. 70:27–56. 2010. View Article : Google Scholar : PubMed/NCBI | |
Delpu Y, Cordelier P, Cho WC and Torrisani J: DNA methylation and cancer diagnosis. Int J Mol Sci. 14:15029–15058. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Wang JQ, Tan Y, Yuan R, Chen ZS and Zou C: RNA methylation and cancer treatment. Pharmacol Res. 174:1059372021. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Zhao H, Liu H, Wang W, Dong H and Zhao C: RNA methylation, homologous recombination repair and therapeutic resistance. Biomed Pharmacother. 166:1154092023. View Article : Google Scholar : PubMed/NCBI | |
An Y and Duan H: The role of m6A RNA methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI | |
Chen XY, Zhang J and Zhu JS: The role of m6A RNA methylation in human cancer. Mol Cancer. 18:1032019. View Article : Google Scholar : PubMed/NCBI | |
He PC and He C: m6 A RNA methylation: From mechanisms to therapeutic potential. EMBO J. 40:e1059772021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Azzam SK, Alsafar H and Sajini AA: FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI | |
Liu ZX, Li LM, Sun HL and Liu SM: Link between m6A modification and cancers. Front Bioeng Biotechnol. 6:892018. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhou X and Wang X: m6A binding protein YTHDF2 in cancer. Exp Hematol Oncol. 11:212022. View Article : Google Scholar : PubMed/NCBI | |
Ramesh-Kumar D and Guil S: The IGF2BP family of RNA binding proteins links epitranscriptomics to cancer. Semin Cancer Biol. 86:18–31. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bi Z, Liu Y, Zhao Y, Yao Y, Wu R, Liu Q, Wang Y and Wang X: A dynamic reversible RNA N6-methyladenosine modification: Current status and perspectives. J Cell Physiol. 234:7948–7956. 2019. View Article : Google Scholar : PubMed/NCBI | |
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C and Le Romancer M: How protein methylation regulates steroid receptor function. Endocr Rev. 43:160–197. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng K, Chen S, Ren Z and Wang Y: Protein arginine methylation in viral infection and antiviral immunity. Int J Biol Sci. 19:5292–5318. 2023. View Article : Google Scholar : PubMed/NCBI | |
Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Chen X and Lu C: The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep. 22:e518032021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Sun Z, Jia J, Du T, Zhang N, Tang Y, Fang Y and Fang D: Overview of histone modification. Adv Exp Med Biol. 1283:1–16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Guo B and Guo X: Histone demethylases in neurodevelopment and neurodegenerative diseases. Int J Neurosci. 1–11. 2023.doi: 10.1080/00207454.2023.2276656. View Article : Google Scholar | |
Harvey HA, Kimura M and Hajba A: Toremifene: An evaluation of its safety profile. Breast. 15:142–157. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Gelmon KE, Giordano SH, Hudis CA, Rowden D, Solky AJ, et al: Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. J Clin Oncol. 32:2255–2269. 2014. View Article : Google Scholar : PubMed/NCBI | |
Montagna E, Cancello G and Colleoni M: The aromatase inhibitors (plus ovarian function suppression) in premenopausal breast cancer patients: Ready for prime time? Cancer Treat Rev. 39:886–890. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crump M, Sawka CA, DeBoer G, Buchanan RB, Ingle JN, Forbes J, Meakin JW, Shelley W and Pritchard KI: An individual patient-based meta-analysis of tamoxifen versus ovarian ablation as first line endocrine therapy for premenopausal women with metastatic breast cancer. Breast Cancer Res Treat. 44:201–210. 1997. View Article : Google Scholar : PubMed/NCBI | |
Tsoutsou PG, Koukourakis MI, Azria D and Belkacemi Y: Optimal timing for adjuvant radiation therapy in breast cancer A comprehensive review and perspectives. Crit Rev Oncol Hematol. 71:102–116. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nakhlis F, Lazarus L, Hou NJ, Acharya S, Khan SA, Staradub VL, Rademaker AW and Morrow M: Tamoxifen use in patients with ductal carcinoma in situ and T1a/b N0 invasive carcinoma. J Am Coll Surg. 201:688–694. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nichols HB, DeRoo LA, Scharf DR and Sandler DP: Risk-Benefit profiles of women using tamoxifen for chemoprevention. J Natl Cancer Inst. 107:3542014.PubMed/NCBI | |
Anderson C, Nichols HB, House M and Sandler DP: Risk versus benefit of chemoprevention among raloxifene and tamoxifen users with a family history of breast cancer. Cancer Prev Res. 12:801–808. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chlebowski RT: Current concepts in breast cancer chemoprevention. Pol Arch Med Wewn. 124:191–199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nichols HB, Sturmer T, Lee VS, Anderson C, Lee JS, Roh JM, Visvanathan K, Muss H and Kushi LH: Breast cancer chemoprevention in an integrated health care setting. JCO Clin Cancer Inform. 1:1–12. 2017. View Article : Google Scholar : PubMed/NCBI | |
Friedl A and Jordan VC: What do we know and what don't we know about tamoxifen in the human uterus. Breast Cancer Res Treat. 31:27–39. 1994. View Article : Google Scholar : PubMed/NCBI | |
DeCensi A, Johansson H, Helland T, Puntoni M, Macis D, Aristarco V, Caviglia S, Webber TB, Briata IM, D'Amico M, et al: Association of CYP2D6 genotype and tamoxifen metabolites with breast cancer recurrence in a low-dose trial. NPJ Breast Cancer. 7:342021. View Article : Google Scholar : PubMed/NCBI | |
Buijs SM, Koolen SLW, Mathijssen RHJ and Jager A: Tamoxifen dose De-escalation: An effective strategy for reducing adverse effects? Drugs. 84:385–401. 2024. View Article : Google Scholar : PubMed/NCBI | |
Reinhorn D, Yerushalmi R, Moore A, Desnoyers A, Saleh RR, Amir E and Goldvaser H: Evolution in the risk of adverse events of adjuvant endocrine therapy in postmenopausal women with early-stage breast cancer. Breast Cancer Res Treat. 182:259–266. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wibowo E, Pollock PA, Hollis N and Wassersug RJ: Tamoxifen in men: A review of adverse events. Andrology. 4:776–788. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sestak I and Cuzick J: Endometrial cancer risk in postmenopausal breast cancer patients treated with tamoxifen or aromatase inhibitors. Expert Rev Endocrinol Metab. 11:425–432. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Warner M and Gustafsson JA: Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol. 418:240–244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ye H, Dudley SZ and Shaw IC: Intimate estrogen receptor-α/ligand relationships signal biological activity. Toxicology. 408:80–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Ni X, Li J, Ye M and Jin X: Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett. 26:5302023. View Article : Google Scholar : PubMed/NCBI | |
Nass N and Kalinski T: Tamoxifen resistance: From cell culture experiments towards novel biomarkers. Pathol Res Pract. 211:189–197. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ramchand SK, Cheung YM, Yeo B and Grossmann M: The effects of adjuvant endocrine therapy on bone health in women with breast cancer. J Endocrinol. 241:R111–R124. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mansouri S, Farahmand L, Hosseinzade A, Eslami SZ and Majidzadeh AK: Estrogen can restore Tamoxifen sensitivity in breast cancer cells amidst the complex network of resistance. Biomed Pharmacother. 93:1320–1325. 2017. View Article : Google Scholar : PubMed/NCBI | |
BachmannMoisson N, BarberiHeyob M and Merlin JL: Molecular mechanisms of tamoxifen resistance. Bull Du Cancer. 84:69–75. 1997. | |
Kulkoyluoglu E and Madak-Erdogan Z: Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids. 114:41–47. 2016. View Article : Google Scholar : PubMed/NCBI | |
Balfe PJ, McCann AH, Welch HM and Kerin MJ: Estrogen receptor beta and breast cancer. Eur J Surg Oncol. 30:1043–1050. 2004. View Article : Google Scholar : PubMed/NCBI | |
Khalid AB and Krum SA: Estrogen receptors alpha and beta in bone. Bone. 87:130–135. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hartman J, Stroem A and Gustafsson JA: Current concepts and significance of estrogen receptor β in prostate cancer. Steroids. 77:1262–1266. 2012. View Article : Google Scholar : PubMed/NCBI | |
Altundag O, Altundag K and Gunduz M: DNA methylation inhibitor, procainamide, may decrease the tamoxifen resistance by inducing overexpression of the estrogen receptor beta in breast cancer patients. Med Hypotheses. 63:684–687. 2004. View Article : Google Scholar : PubMed/NCBI | |
Levy N, Paruthiyil S, Zhao X, Vivar OI, Saunier EF, Griffin C, Tagliaferri M, Cohen I, Speed TP and Leitman DC: Unliganded estrogen receptor-β regulation of genes is inhibited by tamoxifen. Mol Cell Endocrinol. 315:201–207. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tee MK, Rogatsky I, Tzagarakis-Foster C, Cvoro A, An J, Christy RJ, Yamamoto KR and Leitman DC: Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors alpha and beta. Mole Biol Cell. 15:1262–1272. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mansouri S, Feizi N, Mahdi A, Majidzadeh AK and Farahmand L: A review on the role of VEGF in tamoxifen resistance. Anticancer Agents Med Chem. 18:2006–2009. 2018. View Article : Google Scholar : PubMed/NCBI | |
Provenzano A, Kurian S and Abraham J: Overcoming endocrine resistance in breast cancer: Role of the PI3K and the mTOR pathways. Expert Rev Anticancer Ther. 13:143–147. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mohite R and Doshi G: Elucidation of the role of the epigenetic regulatory mechanisms of PI3K/Akt/mTOR signaling pathway in human malignancies. Curr Cancer Drug Targets. 24:231–244. 2024. View Article : Google Scholar : PubMed/NCBI | |
Luo Q, Du R, Liu W, Huang G, Dong Z and Li X: PI3K/Akt/mTOR signaling pathway: Role in esophageal squamous cell carcinoma, regulatory mechanisms and opportunities for targeted therapy. Front Oncol. 12:8523832022. View Article : Google Scholar : PubMed/NCBI | |
Su H, Peng C and Liu Y: Regulation of ferroptosis by PI3K/Akt signaling pathway: A promising therapeutic axis in cancer. Front Cell Dev Biol. 12:13723302024. View Article : Google Scholar : PubMed/NCBI | |
Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A and Saki N: Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci. 72:2337–2347. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hashemi M, Etemad S, Rezaei S, Ziaolhagh S, Rajabi R, Rahmanian P, Abdi S, Koohpar ZK, Rafiei R, Raei B, et al: Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: Revisiting molecular interactions. Biomed Pharmacother. 158:1142042023. View Article : Google Scholar : PubMed/NCBI | |
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, et al: New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract. 251:1549022023. View Article : Google Scholar : PubMed/NCBI | |
Xiang Y, Yang Y, Liu J and Yang X: Functional role of MicroRNA/PI3K/AKT axis in osteosarcoma. Front Oncol. 13:12192112023. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Li J and Ma TT: PI3K/Akt signaling pathway and liver fibrosis. Zhongguo Yaolixue Tongbao. 27:1037–1041. 2011. | |
Li L, Han C and Liu X: Regulation of PI3K-Akt-mTORC1 signal pathway in the cell growth and proliferation. J Biology. 31:75–77. 2014. | |
Minami A, Nakanishi A, Ogura Y, Kitagishi Y and Matsuda S: Connection between tumor suppressor BRCA1 and PTEN in damaged DNA repair. Front Oncol. 4:318. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Chen Q, Zou Y, Chen H, Qi L and Chen Y: Stem cells and cellular origins of breast cancer: Updates in the rationale, controversies, and therapeutic implications. Front Oncol. 9:8202019. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Zhang M, Zhou F, Zhang L and Meng X: The breast cancer stem cells traits and drug resistance. Front Pharmacol. 11:5999652021. View Article : Google Scholar : PubMed/NCBI | |
Telang N: Stem cell models for cancer therapy. Int J Mol Sci. 23:70552022. View Article : Google Scholar : PubMed/NCBI | |
Haiduk TS, Sicking M, Brücksken KA, Espinoza-Sánchez NA, Eder KM, Kemper B, Eich HT, Götte M, Greve B and Troschel FM: Dysregulated stem cell markers Musashi-1 and Musashi-2 are associated with therapy resistance in inflammatory breast cancer. Arch Med Res. 54:1028552023. View Article : Google Scholar : PubMed/NCBI | |
Gelsomino L, Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S and Andò S: Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett. 428:12–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghasemi F, Sarabi PZ, Athari SS and Esmaeilzadeh A: Therapeutics strategies against cancer stem cell in breast ca ncer. Int J Biochem Cell Biol. 109:76–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Albain KS, Czerlanis C, Zlobin A, Covington KR, Rajan P, Godellas C, Bova D, Lo SS, Robinson P, Sarker S, et al: S1-5: Modulation of cancer and stem cell biomarkers by the notch inhibitor MK-0752 added to endocrine therapy for early stage ER + breast cancer. Cancer Res. 71 (Suppl 24):S1–S5. 2011. View Article : Google Scholar | |
Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, et al: Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res. 19:1512–1524. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Xu J, Liu B, He X, Zhou L, Hu X, Qiao F, Zhang A, Xu X, Zhang H, et al: IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer. Cell Death Differ. 25:330–339. 2018. View Article : Google Scholar : PubMed/NCBI | |
Means-Powell JA, Mayer IA, Ismail-Khan R, Del Valle L, Tonetti D, Abramson VG, Sanders MS, Lush RM, Sorrentino C, Majumder S and Miele L: A Phase ib dose escalation trial of RO4929097 (a γ-secretase inhibitor) in combination with exemestane in patients with er plus metastatic breast cancer (MBC). Clin Breast Cancer. 22:103–114. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jeselsohn R, Cornwell M, Pun M, Buchwalter G, Nguyen M, Bango C, Huang Y, Kuang Y, Paweletz C, Fu X, et al: Embryonic transcription factor SOX9 drives breast cancer endocrine resistance. Proc Natl Acad Sci USA. 114:E4482–E4491. 2017. View Article : Google Scholar : PubMed/NCBI | |
Poulard C, Pham TH, Drouet Y, Jacquemetton J, Surmielova A, Kassem L, Mery B, Lasset C, Reboulet J, Treilleux I, et al: Nuclear PRMT5 is a biomarker of sensitivity to tamoxifen in ERα+ breast cancer. Embo Mol Med. 15:e172482023. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Xu M, Le K, Ming J, Guo H, Ruan S and Huang T: SRC promotes tamoxifen resistance in breast cancer via Up-Regulating SIRT1. Onco Targets Ther. 13:4635–4647. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jogi A, Ehinger A, Hartman L and Alkner S: Expression of HIF-1α is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS One. 14:e02261502019. View Article : Google Scholar : PubMed/NCBI | |
Ward A, Balwierz A, Zhang JD, Küblbeck M, Pawitan Y, Hielscher T, Wiemann S and Sahin Ö: Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 32:1173–1182. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD and Jones FE: Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer. 9:3172010. View Article : Google Scholar : PubMed/NCBI | |
Xu E, Hu M, Ge R, Tong D, Fan Y, Ren X and Liu Y: LncRNA-42060 regulates tamoxifen sensitivity and tumor development via regulating the miR-204-5p/SOX4 axis in canine mammary gland tumor cells. Front Vet Sci. 8:6546942021. View Article : Google Scholar : PubMed/NCBI | |
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A and Aliev G: The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol. 82:35–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kim SS, Lee MH and Lee MO: Histone methyltransferases regulate the transcriptional expression of ERα and the proliferation of tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat. 180:45–54. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhou C, Jiang H, Liang L, Shi W, Zhang Q, Sun P, Xiang R, Wang Y and Yang S: ZEB1 induces ER-α promoter hypermethylation and confers antiestrogen resistance in breast cancer. Cell Death Dis. 8:e27322017. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-Garduño AM, Mendoza-Rodríguez MG, Urrutia-Cabrera D, Domínguez-Robles MC, Pérez-Yépez EA, Ayala-Sumuano JT and Meza I: IL-1β induced methylation of the estrogen receptor ERα gene correlates with EMT and chemoresistance in breast cancer cells. Biochem Biophys Res Commun. 490:780–785. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim MR, Wu MJ, Zhang Y, Yang JY and Chang CJ: TET2 directs mammary luminal cell differentiation and endocrine response. Nat Commun. 11:46422020. View Article : Google Scholar : PubMed/NCBI | |
Chang HG, Kim SJ, Chung KW, Noh DY, Kwon Y, Lee ES and Kang HS: Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med (Berl). 83:132–139. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zou JX, Duan Z, Wang J, Sokolov A, Xu J, Chen CZ, Li JJ and Chen HW: Kinesin family deregulation coordinated by bromodomain protein ANCCA and histone methyltransferase MLL for breast cancer cell growth, survival, and tamoxifen resistance. Mol Cancer Res. 12:539–549. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin ML, Kim YW, Jin HL, Kang H, Lee EK, Stallcup MR and Jeong KW: Aberrant expression of SETD1A promotes survival and migration of estrogen receptor α-positive breast cancer cells. Int J Cancer. 143:2871–2883. 2018. View Article : Google Scholar : PubMed/NCBI | |
Stone A, Zotenko E, Locke WJ, Korbie D, Millar EK, Pidsley R, Stirzaker C, Graham P, Trau M, Musgrove EA, et al: DNA methylation of oestrogen-regulated enhancers defines endocrine sensitivity in breast cancer. Nat Commun. 6:77582015. View Article : Google Scholar : PubMed/NCBI | |
Gautam N, Verma H, Choudhary S, Kaur S and Silakari O: Functional relationship of SNP (Ala490Thr) of an epigenetic gene EZH2 results in the progression and poor survival of ER+/tamoxifen treated breast cancer patients. J Genet. 100:862021. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Zhang Z, Cenciarini ME, Proietti CJ, Amasino M, Hong T, Yang M, Liao Y, Chiang HC, Kaklamani VG, et al: Tamoxifen resistance in breast cancer is regulated by the EZH2-ERα-GREB1 transcriptional axis. Cancer Res. 78:671–684. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li J, Liang Y, Zhou S, Chen J and Wu C: UCHL1 contributes to insensitivity to endocrine therapy in triple-negative breast cancer by deubiquitinating and stabilizing KLF5. Breast Cancer Res. 26:442024. View Article : Google Scholar : PubMed/NCBI | |
Redeuilh G, Attia A, Mester J and Sabbah M: Transcriptional activation by the oestrogen receptor α is modulated through inhibition of cyclin-dependent kinases. Oncogene. 21:5773–5782. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang X and Wang ZY: The Wilms' tumor suppressor WT1 regulates expression of members of the epidermal growth factor receptor (EGFR) and estrogen receptor in acquired tamoxifen resistance. Anticancer Res. 30:3637–3642. 2010.PubMed/NCBI | |
Best SA, Hutt KJ, Fu NY, Vaillant F, Liew SH, Hartley L, Scott CL, Lindeman GJ and Visvader JE: Dual roles for Id4 in the regulation of estrogen signaling in the mammary gland and ovary. Development. 141:3159–3164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mobini K, Tamaddon G, Fardid R, Keshavarzi M and Mohammadi-Bardbori A: Aryl hydrocarbon-estrogen alpha receptor-dependent expression of miR-206, miR-27b, and miR-133a suppress cell proliferation and migration in MCF-7 cells. J Biochem Mol Toxicol. 33:e223042019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yu D, Li H, Lv Y and Li S: Long non-coding RNA UCA1 confers tamoxifen resistance in breast cancer endocrinotherapy through regulation of the EZH2/p21 axis and the PI3K/AKT signaling pathway. Int J Oncol. 54:1033–1042. 2019.PubMed/NCBI | |
Ren C, Tang X and Lan H: Comprehensive analysis based on DNA methylation and RNA-seq reveals hypermethylation of the up-regulated WT1 gene with potential mechanisms in PAM50 subtypes of breast cancer. PeerJ. 9:e113772021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang B, Fang J and Cao X: Hypomethylation of DNA-binding inhibitor 4 serves as a potential biomarker in distinguishing acquired tamoxifen-refractory breast cancer. Int J Clin Exp Pathol. 8:9500–9505. 2015.PubMed/NCBI | |
Li X, Wu Y, Liu A and Tang X: MiR-27b is epigenetically downregulated in tamoxifen resistant breast cancer cells due to promoter methylation and regulates tamoxifen sensitivity by targeting HMGB3. Biochem Biophys Res Commun. 477:768–773. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Carlisle SM, Doll MA, Martin RCG, States JC, Klinge CM and Hein DW: High N-Acetyltransferase 1 expression is associated with estrogen receptor expression in breast tumors, but is not Under Direct Regulation by Estradiol, 5α-androstane-3β, 17β-Diol, or dihydrotestosterone in breast cancer cells. J Pharmacol Exp Ther. 365:84–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
González-Bengtsson A, Asadi A, Gao H, Dahlman-Wright K and Jacobsson A: Estrogen enhances the expression of the polyunsaturated fatty acid elongase Elovl2 via ERα in breast cancer cells. PLoS One. 11:e01642412016. View Article : Google Scholar : PubMed/NCBI | |
Rickard DJ, Waters KM, Ruesink TJ, Khosla S, Katzenellenbogen JA, Katzenellenbogen BS, Riggs BL and Spelsberg TC: Estrogen receptor isoform-specific induction of progesterone receptors in human osteoblasts. J Bone Miner Res. 17:580–592. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim SJ, Kang HS, Jung SY, Min SY, Lee S, Kim SW, Kwon Y, Lee KS, Shin KH and Ro J: Methylation patterns of genes coding for drug-metabolizing enzymes in tamoxifen-resistant breast cancer tissues. J Mol Med (Berl). 88:1123–1131. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sun H, Wang G, Cai J, Wei X, Zeng Y, Peng Y and Zhuang J: Long non-coding RNA H19 mediates N-acetyltransferase 1 gene methylation in the development of tamoxifen resistance in breast cancer. Exp Ther Med. 23:122022. View Article : Google Scholar : PubMed/NCBI | |
Kim HW, Baek M, Jung S, Jang S, Lee H, Yang SH, Kwak BS and Kim SJ: ELOVL2-AS1 suppresses tamoxifen resistance by sponging miR-1233-3p in breast cancer. Epigenetics. 18:22763842023. View Article : Google Scholar : PubMed/NCBI | |
Pathiraja TN, Shetty PB, Jelinek J, He R, Hartmaier R, Margossian AL, Hilsenbeck SG, Issa JP and Oesterreich S: Progesterone receptor isoform-specific promoter methylation: Association of PRA promoter methylation with worse outcome in breast cancer patients. Clin Cancer Res. 17:4177–4186. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Li L, Liu H, Qin P, Chen R, Liu S, Xiong H, Li Y, Yang Z, Xie M, et al: PAX2 is regulated by estrogen/progesterone through promoter methylation in endometrioid adenocarcinoma and has an important role in carcinogenesis via the AKT/mTOR signaling pathway. J Pathol. 262:467–479. 2024. View Article : Google Scholar : PubMed/NCBI | |
Oesterreich S, Deng W, Jiang S, Cui X, Ivanova M, Schiff R, Kang K, Hadsell DL, Behrens J and Lee AV: Estrogen-mediated down-regulation of E-cadherin in breast cancer cells. Cancer Res. 63:5203–5208. 2003.PubMed/NCBI | |
Jahangiri R, Mosaffa F, Emami Razavi A, Teimoori-Toolabi L and Jamialahmadi K: PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J Oncol Pharm Pract. 28:310–325. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Gun M and Hong XY: Induced tamoxifen resistance is mediated by increased methylation of E-Cadherin in estrogen receptor-expressing breast cancer cells. Sci Rep. 9:141402019. View Article : Google Scholar : PubMed/NCBI | |
Kim HW, Park JE, Baek M, Kim H, Ji HW, Yun SH, Jeong D, Ham J, Park S, Lu X, et al: Matrix Metalloproteinase-1 (MMP1) upregulation through promoter hypomethylation enhances tamoxifen resistance in breast cancer. Cancers (Basel). 14:12322022. View Article : Google Scholar : PubMed/NCBI | |
Jung HH, Park YH, Jun HJ, Kong J, Kim JH, Kim JA, Yun J, Sun JM, Won YW, Lee S, et al: Matrix Metalloproteinase-1 expression can be upregulated through mitogen-activated protein kinase pathway under the influence of human epidermal growth factor Receptor 2 synergized with estrogen receptor. Mol Cancer Res. 8:1037–1047. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ren W, Yi H, Bao Y, Liu Y and Gao X: Oestrogen inhibits PTPRO to prevent the apoptosis of renal podocytes. Exp Ther Med. 17:2373–2380. 2019.PubMed/NCBI | |
Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T and Jacob ST: Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: Mechanism and role in tamoxifen sensitivity. Mol Endocrinol. 23:176–187. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fan Y, Xie G, Wang Z, Wang Y, Wang Y, Zheng H and Zhong X: PTEN promoter methylation predicts 10-year prognosis in hormone receptor-positive early breast cancer patients who received adjuvant tamoxifen endocrine therapy. Breast Cancer Res Treat. 192:33–42. 2022. View Article : Google Scholar : PubMed/NCBI | |
Phuong NT, Kim SK, Lim SC, Kim HS, Kim TH, Lee KY, Ahn SG, Yoon JH and Kang KW: Role of PTEN promoter methylation in tamoxifen-resistant breast cancer cells. Breast Cancer Res Treat. 130:73–83. 2011. View Article : Google Scholar : PubMed/NCBI | |
Phuong NT, Kim SK, Im JH, Yang JW, Choi MC, Lim SC, Lee KY, Kim YM, Yoon JH and Kang KW: Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells. Oncotarget. 7:13902–13916. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Liu J, Ebrahimi B, Pratap UP, He Y, Altwegg KA, Tang W, Li X, Lai Z, Chen Y, et al: SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance. Breast Cancer Res. 24:262022. View Article : Google Scholar : PubMed/NCBI | |
Schomann T, Mirzakhani K, Kallenbach J, Lu J, Rasa SMM, Neri F and Baniahmad A: Androgen-Induced MIG6 regulates phosphorylation of retinoblastoma protein and AKT to counteract Non-Genomic AR signaling in prostate cancer cells. Biomolecules. 12:10482022. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, et al: Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget. 7:11208–11222. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yue C, Bai Y, Piao Y and Liu H: DOK7 inhibits cell proliferation, migration, and invasion of breast cancer via the PI3K/PTEN/AKT pathway. J Oncol. 2021:40352572021. View Article : Google Scholar : PubMed/NCBI | |
Barkovskaya A, Seip K, Prasmickaite L, Mills IG, Moestue SA and Itkonen HM: Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells. Sci Rep. 10:169922020. View Article : Google Scholar : PubMed/NCBI | |
Maier S, Nimmrich I, Koenig T, Eppenberger-Castori S, Bohlmann I, Paradiso A, Spyratos F, Thomssen C, Mueller V, Nährig J, et al: DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients-Technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur J Cancer. 43:1679–1686. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gowdini E, Aleyasin SA, Ramezani N, Nafisi N and Tutuni M: DOK7 CpG hypermethylation in blood leukocytes as an epigenetic biomarker for acquired tamoxifen resistant in breast cancer. J Hum Genet. 68:33–38. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wujak M, Veith C, Wu CY, Wilke T, Kanbagli ZI, Novoyatleva T, Guenther A, Seeger W, Grimminger F, Sommer N, et al: Adenylate Kinase 4-A key regulator of proliferation and metabolic shift in human pulmonary arterial smooth muscle cells via Akt and HIF-1α signaling pathways. Int J Mol Sci. 22:103712021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Gonzalez G, Dai X, Miao W, Yuan J, Huang M, Bade D, Li L, Sun Y and Wang Y: Adenylate Kinase 4 modulates the resistance of breast cancer cells to tamoxifen through an m6A-Based epitranscriptomic mechanism. Mol Ther. 28:2593–2604. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Lin C, Wang X, Li Q, Li Y, Wang M, Zhao Z, Wu X, Shi D, Xiao Y, et al: Epigenetic silencing of SALL2 confers tamoxifen resistance in breast cancer. EMBO Mol Med. 11:e106382019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Li J, Tang J, Wu Y, Dai F, Yi Z, Wang Y, Li Y, Wu Y, Ren G and Xiang T: ZDHHC22-mediated mTOR palmitoylation restrains breast cancer growth and endocrine therapy resistance. Int J Biol Sci. 18:2833–2850. 2022. View Article : Google Scholar : PubMed/NCBI | |
Al-Ansari MM, Hendrayani SF, Tulbah A, Al-Tweigeri T, Shehata AI and Aboussekhra A: p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia. 14:1269–1277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou J and Chen C: Suppression of malignant melanoma by knocking down growth differentiation factor-15 via inhibiting PTEN/PI3K/AKT signaling pathway. J Cancer. 15:1115–1123. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Yao F, Xiao Q, Liu Q, Yang Y, Li X, Jiang G, Kuno T and Fang Y: EZH2 inhibition sensitizes tamoxifen-resistant breast cancer cells through cell cycle regulation. Mol Med Rep. 17:2642–2650. 2018.PubMed/NCBI | |
Stone A, Valdés-Mora F, Gee JM, Farrow L, McClelland RA, Fiegl H, Dutkowski C, McCloy RA, Sutherland RL, Musgrove EA and Nicholson RI: Tamoxifen-induced epigenetic silencing of oestrogen-regulated genes in anti-hormone resistant breast cancer. PLoS One. 7:e404662012. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Sun M, Li S, Chen Z and Geng D: Transcription factor ATF3 mediates the radioresistance of breast cancer. J Cell Mol Med. 22:4664–4675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yuan J, Zhang X, Li L, Dai X, Chen Q and Wang Y: ATF3 modulates the resistance of breast cancer cells to tamoxifen through an N6-Methyladenosine-Based epitranscriptomic mechanism. Chem Res Toxicol. 34:1814–1821. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lv Y, Fang L, Ding P and Liu R: PI3K/Akt-Beclin1 signaling pathway positively regulates phagocytosis and negatively mediates NF-κB-dependent inflammation in Staphylococcus aureus-infected macrophages. Biochem Biophys Res Commun. 510:284–289. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xie S, Yang J, Xiong H, Jia Y, Zhou Y, Chen Y, Ying X, Chen C, Ye C, et al: The long noncoding RNA H19 promotes tamoxifen resistance in breast cancer via autophagy. J Hematol Oncol. 12:812019. View Article : Google Scholar : PubMed/NCBI | |
Gu Q-Z, Nijiati A, Gao X, Tao KL, Li CD, Fan XP and Tian Z: TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling. Mol Med Rep. 8:1782–1788. 2018.PubMed/NCBI | |
Zimmers SM, Browne EP, Williams KE, Jawale RM, Otis CN, Schneider SS and Arcaro KF: TROP2 methylation and expression in tamoxifen-resistant breast cancer. Cancer Cell Int. 18:942018. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Jiang JF and Shi L: Lycorine weakens tamoxifen resistance of breast cancer via abrogating HAGLR-mediated epigenetic suppression on VGLL4 by DNMT1. Kaohsiung J Med Sci. 39:278–289. 2023. View Article : Google Scholar : PubMed/NCBI | |
Watanabe T, Oba T, Tanimoto K, Shibata T, Kamijo S and Ito KI: Tamoxifen resistance alters sensitivity to 5-fluorouracil in a subset of estrogen receptor-positive breast cancer. PLoS One. 16:e02528222021. View Article : Google Scholar : PubMed/NCBI | |
Williams KE, Anderton DL, Lee MP, Pentecost BT and Arcaro KF: High-density array analysis of DNA methylation in Tamoxifen-resistant breast cancer cell lines. Epigenetics. 9:297–307. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ansar M, Thu LTA, Hung CS, Su CM, Huang MH, Liao LM, Chung YM and Lin RK: Promoter hypomethylation and overexpression of TSTD1 mediate poor treatment response in breast cancer. Front Oncol. 12:10042612022. View Article : Google Scholar : PubMed/NCBI | |
Pietkiewicz PP, Lutkowska A, Lianeri M and Jagodzinski PP: Tamoxifen epigenetically modulates CXCL12 expression in MCF-7 breast cancer cells. Biomed Pharmacother. 64:54–57. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martens JW, Nimmrich I, Koenig T, Look MP, Harbeck N, Model F, Kluth A, Bolt-de Vries J, Sieuwerts AM, Portengen H, et al: Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res. 65:4101–4117. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Li D, Rodriguez-Juarez R, Farfus A, Storozynsky Q, Malach M, Carpenter E, Filkowski J, Lykkesfeldt AE and Kovalchuk O: A suppressive role of guanine nucleotide-binding protein subunit beta-4 inhibited by DNA methylation in the growth of anti-estrogen resistant breast cancer cells. BMC cancer. 18:8172018. View Article : Google Scholar : PubMed/NCBI | |
Kedia-Mokashi NA, Kadam L, Ankolkar M, Dumasia K and Balasinor NH: Aberrant methylation of multiple imprinted genes in embryos of tamoxifen-treated male rats. Reproduction. 146:155–168. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liggett TE, Melnikov AA, Marks JR and Levenson VV: Methylation patterns in cell-free plasma DNA reflect removal of the primary tumor and drug treatment of breast cancer patients. Int J Cancer. 128:492–499. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pathak S, Kedia-Mokashi N, Saxena M, D'Souza R, Maitra A, Parte P, Gill-Sharma M and Balasinor N: Effect of tamoxifen treatment on global and insulin-like growth factor 2-H19 locus-specific DNA methylation in rat spermatozoa and its association with embryo loss. Fertil Steril. 91:2253–2263. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Zhan Z, Ye M and Jin X: The crosstalk between ubiquitination and endocrine therapy. J Mol Med (Berl). 101:461–486. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kubarek Ł and Jagodzinski PP: Epigenetic up-regulation of CXCR4 and CXCL12 expression by 17 beta-estradiol and tamoxifen is associated with formation of DNA methyltransferase 3B4 splice variant in Ishikawa endometrial adenocarcinoma cells. FEBS Lett. 581:1441–1448. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, et al: Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature. 438:981–987. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tryndyak VP, Muskhelishvili L, Kovalchuk O, Rodriguez-Juarez R, Montgomery B, Churchwell MI, Ross SA, Beland FA and Pogribny IP: Effect of long-term tamoxifen exposure on genotoxic and epigenetic changes in rat liver: Implications for tamoxifen-induced hepatocarcinogenesis. Carcinogenesis. 27:1713–1720. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fan M, Yan PS, Hartman-Frey C, Chen L, Paik H, Oyer SL, Salisbury JD, Cheng AS, Li L, Abbosh PH, et al: Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 66:11954–11966. 2006. View Article : Google Scholar : PubMed/NCBI | |
Snider H, Villavarajan B, Peng Y, Shepherd LE, Robinson AC and Mueller CR: Region-specific glucocorticoid receptor promoter methylation has both positive and negative prognostic value in patients with estrogen receptor-positive breast cancer. Clin Epigenetics. 11:1552019. View Article : Google Scholar : PubMed/NCBI | |
Kala R and Tollefsbol TO: A novel combinatorial epigenetic therapy using resveratrol and pterostilbene for restoring estrogen Receptor-α (ERα) expression in ERα-Negative breast cancer cells. PLoS One. 11:e01550572016. View Article : Google Scholar : PubMed/NCBI | |
Zhang WJ, Xu DF, Fan QX, Wu XA, Wang F, Wang R and Wang LX: Arsenic trioxide restores ERα expression in ERα-negative human breast cancer cells and its treatment efficacy in combination with tamoxifen in xenografts in nude mice. Zhonghua Zhong Liu Za Zhi. 34:645–651. 2012.(In Chinese). PubMed/NCBI | |
Tang B, Peng ZH and Jiang J: The synergistic inhibitory effect of 5-aza-2-deoxycytidine and Tamoxifen on estrogen receptor alpha negative breast cancer cell lines in vitro. Zhonghua Wai Ke Za Zhi. 43:1545–1549. 2005.(In Chinese). PubMed/NCBI | |
Selmin OI, Donovan MG, Skovan B, Paine-Murieta GD and Romagnolo DF: Arsenic-induced BRCA1 CpG promoter methylation is associated with the downregulation of ERα and resistance to tamoxifen in MCF7 breast cancer cells and mouse mammary tumor xenografts. Int J Oncol. 54:869–878. 2019.PubMed/NCBI | |
Wu HT, Liu YE, Hsu KW, Wang YF, Chan YC, Chen Y and Chen DR: MLL3 induced by luteolin causes apoptosis in Tamoxifen-Resistant breast cancer cells through H3K4 monomethylation and suppression of the PI3K/AKT/mTOR Pathway. Am J Chin Med. 48:1221–1241. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin K, Lan H, Zhang J, Lv J, Chen Y, Yu K and Wang W: UBASH3B promotes tamoxifen resistance and could be negatively regulated by ESR1. Oncotarget. 9:8326–8333. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jayasree PJ, Dutta S, Karemore P and Khandelia P: Crosstalk between m6A RNA methylation and miRNA biogenesis in cancer: An unholy nexus. Mol Biotechnol. Oct 13–2023.doi: 10.1007/s12033-023-00921-w. View Article : Google Scholar | |
Noh EM, Lee YR, Chay KO, Chung EY, Jung SH, Kim JS and Youn HJ: Estrogen receptor α induces down-regulation of PTEN through PI3-kinase activation in breast cancer cells. Mol Med Rep. 4:215–219. 2011.PubMed/NCBI | |
Khatpe AS, Adebayo AK, Herodotou CA, Kumar B and Nakshatri H: Nexus between PI3K/AKT and estrogen receptor signaling in breast cancer. Cancers (Basel). 13:3692021. View Article : Google Scholar : PubMed/NCBI | |
Zhu D, Zeng S, Su C, Li J, Xuan Y, Lin Y, Xu E and Fan Q: The interaction between DNA methylation and tumor immune microenvironment: From the laboratory to clinical applications. Clin Epigenetics. 16:242024. View Article : Google Scholar : PubMed/NCBI | |
Sina AA, Carrascosa LG and Trau M: DNA Methylation-based point-of-care cancer detection: Challenges and possibilities. Trends Mol Med. 25:955–966. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang M, Lin Y, Zhao J, Gu H and Li X: Circulating tumor DNA methylation: A promising clinical tool for cancer diagnosis and management. Clin Chem Lab Med. Mar 7–2024.doi: 10.1515/cclm-2023-1327. View Article : Google Scholar | |
Garcia-Ortiz MV, Cano-Ramirez P, Toledano-Fonseca M, Aranda E and Rodriguez-Ariza A: Diagnosing and monitoring pancreatic cancer through cell-free DNA methylation: Progress and prospects. Biomark Res. 11:882023. View Article : Google Scholar : PubMed/NCBI | |
Fan S and Chi W: Methods for genome-wide DNA methylation analysis in human cancer. Brief Funct Genomics. 15:432–442. 2016.PubMed/NCBI | |
Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W and Ye L: Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol. 11:262018. View Article : Google Scholar : PubMed/NCBI | |
Geter PA, Ernlund AW, Bakogianni S, Alard A, Arju R, Giashuddin S, Gadi A, Bromberg J and Schneider RJ: Hyperactive mTOR and MNK1 phosphorylation of eIF4E confer tamoxifen resistance and estrogen independence through selective mRNA translation reprogramming. Genes Dev. 31:2235–2249. 2017. View Article : Google Scholar : PubMed/NCBI | |
Filipčík P, Curry JR and Mace PD: When Worlds Collide-mechanisms at the interface between phosphorylation and ubiquitination. J Mol Biol. 429:1097–1113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bailey LT, Northall SJ and Schalch T: Breakers and amplifiers in chromatin circuitry: Acetylation and ubiquitination control the heterochromatin machinery. Curr Opin Struct Biol. 71:156–163. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shukla A, Chaurasia P and Bhaumik SR: Histone methylation and ubiquitination with their cross-talk and roles in gene expression and stability. Cell Mol Life Sci. 66:1419–1433. 2009. View Article : Google Scholar : PubMed/NCBI | |
Separovich RJ, Pang CNI and Wilkins MR: Controlling the controllers: Regulation of histone methylation by phosphosignalling. Trends Biochem Sci. 45:1035–1048. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blackburn SA, Parks RM and Cheung KL: Fulvestrant for the treatment of advanced breast cancer. Expert Rev Anticancer Ther. 18:619–628. 2018. View Article : Google Scholar : PubMed/NCBI | |
Intabli H, Gee JM, Oesterreich S, Yeoman MS, Allen MC, Qattan A and Flint MS: Glucocorticoid induced loss of oestrogen receptor alpha gene methylation and restoration of sensitivity to fulvestrant in triple negative breast cancer. Gene. 851:1470222023. View Article : Google Scholar : PubMed/NCBI | |
Hopcroft L, Wigmore EM, Williamson SC, Ros S, Eberlein C, Moss JI, Urosevic J, Carnevalli LS, Talbot S, Bradshaw L, et al: Combining the AKT inhibitor capivasertib and SERD fulvestrant is effective in palbociclib-resistant ER+ breast cancer preclinical models. NPJ Breast Cancer. 9:642023. View Article : Google Scholar : PubMed/NCBI |