1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zong L, Abe M, Seto Y and Ji J: The
challenge of screening for early gastric cancer in China. Lancet.
388:26062016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Huang S, Guo Y, Li Z, Zhang Y, Zhou T, You
W, Pan K and Li W: A systematic review of metabolomic profiling of
gastric cancer and esophageal cancer. Cancer Biol Med. 17:181–198.
2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Abbassi-Ghadi N, Kumar S, Huang J, Goldin
R, Takats Z and Hanna GB: Metabolomic profiling of
oesophago-gastric cancer: A systematic review. Eur J Cancer.
49:3625–3637. 2013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gu J, Hu X, Shao W, Ji T, Yang W, Zhuo H,
Jin Z, Huang H, Chen J, Huang C and Lin D: Metabolomic analysis
reveals altered metabolic pathways in a rat model of gastric
carcinogenesis. Oncotarget. 7:60053–60073. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kim KB, Yang JY, Kwack SJ, Park KL, Kim
HS, Ryu DH, Kim YJ, Hwang GS and Lee BM: Toxicometabolomics of
urinary biomarkers for human gastric cancer in a mouse model. J
Toxicol Environ Health A. 73:1420–1430. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Matsunaga S, Nishiumi S, Tagawa R and
Yoshida M: Alterations in metabolic pathways in gastric epithelial
cells infected with Helicobacter pylori. Microb Pathog.
124:122–129. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Di Gialleonardo V, Tee SS, Aldeborgh HN,
Miloushev VZ, Cunha LS, Sukenick GD and Keshari KR: High-throughput
indirect quantitation of 13C enriched metabolites using
1H NMR. Anal Chem. 88:11147–11153. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Holmes E, Wilson ID and Nicholson JK:
Metabolic phenotyping in health and disease. Cell. 134:714–717.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Wishart DS: Emerging applications of
metabolomics in drug discovery and precision medicine. Nat Rev Drug
Discov. 15:473–484. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Chan AW, Gill RS, Schiller D and Sawyer
MB: Potential role of metabolomics in diagnosis and surveillance of
gastric cancer. World J Gastroenterol. 20:12874–12882. 2014.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Che J, Zhao Y, Gu B, Li S, Li Y, Pan K,
Sun T, Han X, Lv J, Zhang S, et al: Untargeted serum metabolomics
reveals potential biomarkers and metabolic pathways associated with
the progression of gastroesophageal cancer. BMC Cancer.
23:12382023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tokunaga M, Kami K, Ozawa S, Oguma J,
Kazuno A, Miyachi H, Ohashi Y, Kusuhara M and Terashima M:
Metabolome analysis of esophageal cancer tissues using capillary
electrophoresis-time-of-flight mass spectrometry. Int J Oncol.
52:1947–1958. 2018.PubMed/NCBI
|
15
|
Wang J, Kunzke T, Prade VM, Shen J, Buck
A, Feuchtinger A, Haffner I, Luber B, Liu DHW, Langer R, et al: A
serum metabolomics analysis reveals a panel of screening metabolic
biomarkers for esophageal squamous cell carcinoma. Clin Transl Med.
11:e4192021. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Li J, Li S, Yu L, Wei J, Sun H, Yang C and
Tan H: Identification of preoperative serum metabolites associated
with postoperative opioid consumption in gastric cancer patients by
extreme phenotype sampling. Pain Physician. 25:E385–E396.
2022.PubMed/NCBI
|
17
|
Yuan LW, Yamashita H and Seto Y: Glucose
metabolism in gastric cancer: The cutting-edge. World J
Gastroenterol. 22:2046–2059. 2016. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xiao S and Zhou L: Gastric cancer:
Metabolic and metabolomics perspectives (review). Int J Oncol.
51:5–17. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Davey Smith G and Hemani G: Mendelian
randomization: Genetic anchors for causal inference in
epidemiological studies. Hum Mol Genet. 23((R1)): R89–R98. 2014.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen Y, Lu T, Pettersson-Kymmer U, Stewart
ID, Butler-Laporte G, Nakanishi T, Cerani A, Liang KYH, Yoshiji S,
Willett JDS, et al: Genomic atlas of the plasma metabolome
prioritizes metabolites implicated in human diseases. Nat Genet.
55:44–53. 2023. View Article : Google Scholar : PubMed/NCBI
|
21
|
Burgess S and Thompson SG: Interpreting
findings from Mendelian randomization using the MR-egger method.
Eur J Epidemiol. 32:377–389. 2017. View Article : Google Scholar : PubMed/NCBI
|
22
|
Feng Q, Lacey B, Bešević J, Omiyale W,
Conroy M, Starkey F, Calvin C, Callen H, Bramley L, Welsh S, et al:
UK biobank: Enhanced assessment of the epidemiology and long-term
impact of coronavirus disease-2019. Camb Prism Precis Med.
1:e302023. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang J, Yan B, Zhao B, Fan Y, He X, Yang
L, Ma Q, Zheng J, Wang W, Bai L, et al: Assessing the causal
effects of human serum metabolites on 5 major psychiatric
disorders. Schizophr Bull. 46:804–813. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Choi KW, Chen CY, Stein MB, Klimentidis
YC, Wang MJ, Koenen KC and Smoller JW; Major Depressive Disorder
Working Group of the Psychiatric Genomics Consortium, : Assessment
of bidirectional relationships between physical activity and
depression among adults: A 2-sample mendelian randomization study.
JAMA Psychiatry. 76:399–408. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Sun Y, Zhou J and Ye K: White blood cells
and severe COVID-19: A mendelian randomization study. J Pers Med.
11:1952021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Sidore C, Busonero F, Maschio A, Porcu E,
Naitza S, Zoledziewska M, Mulas A, Pistis G, Steri M, Danjou F, et
al: Genome sequencing elucidates Sardinian genetic architecture and
augments association analyses for lipid and blood inflammatory
markers. Nat Genet. 47:1272–1281. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Park JH, Wacholder S, Gail MH, Peters U,
Jacobs KB, Chanock SJ and Chatterjee N: Estimation of effect size
distribution from genome-wide association studies and implications
for future discoveries. Nat Genet. 42:570–575. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Davies NM, Holmes MV and Davey SG: Reading
Mendelian randomisation studies: A guide, glossary, and checklist
for clinicians. BMJ. 362:k6012018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Hartwig FP, Davey Smith G and Bowden J:
Robust inference in summary data Mendelian randomization via the
zero modal pleiotropy assumption. Int J Epidemiol. 46:1985–1998.
2017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bowden J, Davey Smith G, Haycock PC and
Burgess S: Consistent estimation in Mendelian randomization with
some invalid instruments using a weighted median estimator. Genet
Epidemiol. 40:304–314. 2016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Allen RJ, Porte J, Braybrooke R, Flores C,
Fingerlin TE, Oldham JM, Guillen-Guio B, Ma SF, Okamoto T, John AE,
et al: Genetic variants associated with susceptibility to
idiopathic pulmonary fibrosis in people of European ancestry: A
genome-wide association study. Lancet Respir Med. 5:869–880. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Burgess S, Bowden J, Fall T, Ingelsson E
and Thompson SG: Sensitivity analyses for robust causal inference
from Mendelian randomization analyses with multiple genetic
variants. Epidemiology. 28:30–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Verbanck M, Chen CY, Neale B and Do R:
Detection of widespread horizontal pleiotropy in causal
relationships inferred from Mendelian randomization between complex
traits and diseases. Nat Genet. 50:693–698. 2018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hemani G, Tilling K and Davey Smith G:
Orienting the causal relationship between imprecisely measured
traits using GWAS summary data. PLoS Genet. 13:e10070812017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Yavorska OO and Burgess S:
MendelianRandomization: An R package for performing Mendelian
randomization analyses using summarized data. Int J Epidemiol.
46:1734–1739. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hemani G, Zheng J, Elsworth B, Wade KH,
Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R, et
al: The MR-base platform supports systematic causal inference
across the human phenome. Elife. 7:e344082018. View Article : Google Scholar : PubMed/NCBI
|
37
|
van Dongen KCW, Belzer C, Bakker W,
Rietjens IMCM and Beekmann K: Inter- and intraindividual
differences in the capacity of the human intestinal microbiome in
fecal slurries to metabolize fructoselysine and
carboxymethyllysine. J Agric Food Chem. 70:11759–11768. 2022.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sergi D, Boulestin H, Campbell FM and
Williams LM: The role of dietary advanced glycation end products in
metabolic dysfunction. Mol Nutr Food Res. 65:e19009342021.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Rabbani N and Thornalley PJ: Hidden
complexities in the measurement of fructosyl-lysine and advanced
glycation end products for risk prediction of vascular
complications of diabetes. Diabetes. 64:9–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sobenin IA, Tertov VV, Koschinsky T,
Bünting CE, Slavina ES, Dedov II and Orekhov AN: Modified low
density lipoprotein from diabetic patients causes cholesterol
accumulation in human intimal aortic cells. Atherosclerosis.
100:41–54. 1993. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ahmed N, Ahmed U, Thornalley PJ, Hager K,
Fleischer G and Münch G: Protein glycation, oxidation and nitration
adduct residues and free adducts of cerebrospinal fluid in
Alzheimer's disease and link to cognitive impairment. J Neurochem.
92:255–263. 2005. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ahmed MU, Thorpe SR and Baynes JW:
Identification of N epsilon-carboxymethyllysine as a degradation
product of fructoselysine in glycated protein. J Biol Chem.
261:4889–4894. 1986. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H
and Wang C: Intestinal microbiota and metabolomics reveal the role
of auricularia delicate in regulating colitis-associated colorectal
cancer. Nutrients. 15:50112023. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zen K, Chen CXJ, Chen YT, Wilton R and Liu
Y: Receptor for advanced glycation endproducts mediates neutrophil
migration across intestinal epithelium. J Immunol. 178:2483–2490.
2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Raupbach J, Müller SK, Schnell V,
Friedrich S, Hellwig A, Grune T and Henle T: The effect of free and
protein-bound maillard reaction products N-ε-carboxymethyllysine,
N-ε-fructosyllysine, and pyrraline on Nrf2 and NFκB in HCT 116
cells. Mol Nutr Food Res. 67:e23001372023. View Article : Google Scholar : PubMed/NCBI
|
46
|
Urbelienė N, Tiškus M, Tamulaitienė G,
Gasparavičiūtė R, Lapinskaitė R, Jauniškis V, Sūdžius J, Meškienė
R, Tauraitė D, Skrodenytė E, et al: Cytidine deaminases catalyze
the conversion of N(S,O)4-substituted pyrimidine
nucleosides. Sci Adv. 9:eade43612023. View Article : Google Scholar : PubMed/NCBI
|
47
|
Chen Y, Ma Z, Shen X, Li L, Zhong J, Min
LS, Xu L, Li H, Zhang J and Dai L: Serum lipidomics profiling to
identify biomarkers for non-small cell lung cancer. Biomed Res Int.
2018:52762402018.PubMed/NCBI
|
48
|
Onclercq-Delic R, Buhagiar-Labarchède G,
Leboucher S, Larcher T, Ledevin M, Machon C, Guitton J and
Amor-Guéret M: Cytidine deaminase deficiency in mice enhances
genetic instability but limits the number of chemically induced
colon tumors. Cancer Lett. 555:2160302023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Olou AA, King RJ, Yu F and Singh PK: MUC1
oncoprotein mitigates ER stress via CDA-mediated reprogramming of
pyrimidine metabolism. Oncogene. 39:3381–3395. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Deng YQ, Gao M, Lu D, Liu QP, Zhang RJ, Ye
J, Zhao J, Feng ZH, Li QZ and Zhang H: Compound-composed Chinese
medicine of Huachansu triggers apoptosis of gastric cancer cells
through increase of reactive oxygen species levels and suppression
of proteasome activities. Phytomedicine. 123:1551692024. View Article : Google Scholar : PubMed/NCBI
|
51
|
Sun W, Yuan Y, Chen J, Bao Q, Shang M, Sun
P and Peng H: Construction and validation of a novel
senescence-related risk score can help predict the prognosis and
tumor microenvironment of gastric cancer patients and determine
that STK40 can affect the ROS accumulation and proliferation
ability of gastric cancer cells. Front Immunol. 14:12592312023.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Javid H, Hashemy SI, Heidari MF, Esparham
A and Gorgani-Firuzjaee S: The anticancer role of cerium oxide
nanoparticles by inducing antioxidant activity in esophageal cancer
and cancer stem-like ESCC spheres. Biomed Res Int.
2022:32681972022. View Article : Google Scholar : PubMed/NCBI
|
53
|
Cannon A, Maher SG and Lynam-Lennon N:
Generation and characterization of an isogenic cell line model of
radioresistant esophageal adenocarcinoma. Methods Mol Biol.
2645:139–152. 2023. View Article : Google Scholar : PubMed/NCBI
|
54
|
DeBerardinis RJ: Is cancer a disease of
abnormal cellular metabolism? New angles on an old idea. Genet Med.
10:767–777. 2008. View Article : Google Scholar : PubMed/NCBI
|
55
|
Farahzadi R, Sanaat Z,
Movassaghpour-Akbari AA, Fathi E and Montazersaheb S: Investigation
of L-carnitine effects on CD44+ cancer stem cells from
MDA-MB-231 breast cancer cell line as anti-cancer therapy. Regen
Ther. 24:219–226. 2023. View Article : Google Scholar : PubMed/NCBI
|
56
|
Dambrova M, Makrecka-Kuka M, Kuka J,
Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC,
Oler E, et al: Acylcarnitines: Nomenclature, biomarkers,
therapeutic potential, drug targets, and clinical trials. Pharmacol
Rev. 74:506–551. 2022. View Article : Google Scholar : PubMed/NCBI
|
57
|
Nasca C, Bigio B, Lee FS, Young SP, Kautz
MM, Albright A, Beasley J, Millington DS, Mathé AA, Kocsis JH, et
al: Acetyl-l-carnitine deficiency in patients with major depressive
disorder. Proc Natl Acad Sci USA. 115:8627–8632. 2018. View Article : Google Scholar : PubMed/NCBI
|
58
|
Zhang X, Wang C, Li C and Zhao H:
Development and internal validation of nomograms based on plasma
metabolites to predict non-small cell lung cancer risk in smoking
and nonsmoking populations. Thorac Cancer. 14:1719–1731. 2023.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Laviano A, Molfino A, Seelaender M,
Frascaria T, Bertini G, Ramaccini C, Bollea MR, Citro G and Rossi
Fanelli F: Carnitine administration reduces cytokine levels,
improves food intake, and ameliorates body composition in
tumor-bearing rats. Cancer Invest. 29:696–700. 2011. View Article : Google Scholar : PubMed/NCBI
|