1
|
Petrie MC, Verma S, Docherty KF, Inzucchi
SE, Anand I, Belohlávek J, Böhm M, Chiang CE, Chopra VK, de Boer
RA, et al: Effect of dapagliflozin on worsening heart failure and
cardiovascular death in patients with heart failure with and
without diabetes. JAMA. 323:1353–1368. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Raphael CE, Roger VL, Sandoval Y, Singh M,
Bell M, Lerman A, Rihal CS, Gersh BJ, Lewis B, Lennon RJ, et al:
Incidence, trends, and outcomes of type 2 myocardial infarction in
a community cohort. Circulation. 141:454–463. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Chang X, Toan S, Li R and Zhou H:
Therapeutic strategies in ischemic cardiomyopathy: Focus on
mitochondrial quality surveillance. EBioMedicine. 84:1042602022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang K, Li Y, Qiang T, Chen J and Wang X:
Role of epigenetic regulation in myocardial ischemia/reperfusion
injury. Pharmacol Res. 170:1057432021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Algoet M, Janssens S, Himmelreich U, Gsell
W, Pusovnik M, Van den Eynde J and Oosterlinck W: Myocardial
ischemia-reperfusion injury and the influence of inflammation.
Trends Cardiovasc Med. 33:357–366. 2023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao WK, Zhou Y, Xu TT and Wu Q:
Ferroptosis: Opportunities and challenges in myocardial
ischemia-reperfusion injury. Oxid Med Cell Longev.
2021:99296872021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen CL, Zhang L, Jin Z, Kasumov T and
Chen YR: Mitochondrial redox regulation and myocardial
ischemia-reperfusion injury. Am J Physiol Cell Physiol.
322:C12–C23. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Mokhtari-Zaer A, Marefati N, Atkin SL,
Butler AE and Sahebkar A: The protective role of curcumin in
myocardial ischemia-reperfusion injury. J Cell Physiol.
234:214–222. 2018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Ibáñez B, Heusch G, Ovize M and Van de
Werf F: Evolving therapies for myocardial ischemia/reperfusion
injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Sessler DI: Mild perioperative
hypothermia. N Engl J Med. 336:1730–1737. 1997. View Article : Google Scholar : PubMed/NCBI
|
11
|
Shi H, Su Z, Su H, Chen H, Zhang Y and
Cheng Y: Mild hypothermia improves brain injury in rats with
intracerebral hemorrhage by inhibiting IRAK2/NF-κB signaling
pathway. Brain Behav. 11:e019472021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Iaizzo PA, Kehler CH, Carr RJ, Sessler DI
and Belani KG: Prior hypothermia attenuates malignant hyperthermia
in susceptible swine. Anesth Analg. 82:803–809. 1996. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wass CT, Lanier WL, Hofer RE, Scheithauer
BW and Andrews AG: Temperature changes of > or=1 degree C alter
functional neurologic outcome and histopathology in a canine model
of complete cerebral ischemia. Anesthesiology. 83:325–335. 1995.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Schleef M, Gonnot F, Pillot B, Leon C,
Chanon S, Vieille-Marchiset A, Rabeyrin M, Bidaux G,
Guebre-Egziabher F, Juillard L, et al: Mild Therapeutic hypothermia
protects from acute and chronic renal ischemia-reperfusion injury
in mice by mitigated mitochondrial dysfunction and modulation of
local and systemic inflammation. Int J Mol Sci. 23:92292022.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu X, Wen S, Zhao S, Yan F, Zhao S, Wu D
and Ji X: Mild therapeutic hypothermia protects the brain from
ischemia/reperfusion injury through upregulation of iASPP. Aging
Dis. 9:401–411. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xiao Q, Ye Q, Wang W, Xiao J, Fu B, Xia Z,
Zhang X, Liu Z and Zeng X: Mild hypothermia pretreatment protects
against liver ischemia reperfusion injury via the PI3K/AKT/FOXO3a
pathway. Mol Med Rep. 16:7520–7526. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tissier R, Chenoune M, Ghaleh B, Cohen MV,
Downey JM and Berdeaux A: The small chill: Mild hypothermia for
cardioprotection? Cardiovasc Res. 88:406–414. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kanemoto S, Matsubara M, Noma M, Leshnower
BG, Parish LM, Jackson BM, Hinmon R, Hamamoto H, Gorman JH III and
Gorman RC: Mild hypothermia to limit myocardial
ischemia-reperfusion injury: Importance of timing. Ann Thorac Surg.
87:157–163. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Mochizuki T, Yu S, Katoh T, Aoki K and
Sato S: Cardioprotective effect of therapeutic hypothermia at 34°C
against ischaemia/reperfusion injury mediated by PI3K and nitric
oxide in a rat isolated heart model. Resuscitation. 83:238–242.
2012. View Article : Google Scholar : PubMed/NCBI
|
20
|
Gao R, Zhao H, Wang X, Tang B, Cai Y,
Zhang X, Zong H, Li Y and Wang Y: Mild hypothermia therapy lowers
the inflammatory level and apoptosis rate of myocardial cells of
rats with myocardial ischemia-reperfusion injury via the NLRP3
inflammasome pathway. Comput Math Methods Med. 2021:64152752021.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Harteneck C, Plant TD and Schultz G: From
worm to man: Three subfamilies of TRP channels. Trends Neurosci.
23:159–166. 2000. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sah R, Mesirca P, Mason X, Gibson W,
Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME
and Clapham DE: Timing of myocardial trpm7 deletion during
cardiogenesis variably disrupts adult ventricular function,
conduction, and repolarization. Circulation. 128:101–114. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhao L, Wang Y, Sun N, Liu X, Li L and Shi
J: Electroacupuncture regulates TRPM7 expression through the
trkA/PI3K pathway after cerebral ischemia-reperfusion in rats. Life
Sci. 81:1211–1222. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Aarts M, Iihara K, Wei WL, Xiong ZG,
Arundine M, Cerwinski W, MacDonald JF and Tymianski M: A key role
for TRPM7 channels in anoxic neuronal death. Cell. 115:863–877.
2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Fatima G, Sharma VP, Das SK and Mahdi AA:
Oxidative stress and antioxidative parameters in patients with
spinal cord injury: Implications in the pathogenesis of disease.
Spinal Cord. 53:3–6. 2015. View Article : Google Scholar : PubMed/NCBI
|
26
|
Meng Z, Wang X, Yang Z and Xiang F:
Expression of transient receptor potential melastatin 7
up-regulated in the early stage of renal ischemia-reperfusion.
Transplant Proc. 44:1206–1210. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou DM, Sun LL, Zhu J, Chen B, Li XQ and
Li WD: MiR-9 promotes angiogenesis of endothelial progenitor cell
to facilitate thrombi recanalization via targeting TRPM7 through
PI3K/Akt/autophagy pathway. J Cell Mol Med. 24:4624–4632. 2020.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Yang J, Hu S, Huang L, Zhou J, Xiang H,
Yang H, Cheng H and Tang Y: Protective effect of inhibiting TRPM7
expression on hypoxia post-treatment H9C2 cardiomyocytes. Clin
Hemorheol Microcirc. 77:91–105. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
31
|
Su LJ, Zhang JH, Gomez H, Murugan R, Hong
X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med
Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Wu X, Li Y, Zhang S and Zhou X:
Ferroptosis as a novel therapeutic target for cardiovascular
disease. Theranostics. 11:3052–3059. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang Z, Tang J, Song J, Xie M, Liu Y,
Dong Z, Liu X, Li X, Zhang M, Chen Y, et al: Elabela alleviates
ferroptosis, myocardial remodeling, fibrosis and heart dysfunction
in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling.
Free Radic Biol Med. 181:130–142. 2022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang X, Chen X, Zhou W, Men H, Bao T, Sun
Y, Wang Q, Tan Y, Keller BB, Tong Q, et al: Ferroptosis is
essential for diabetic cardiomyopathy and is prevented by
sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 12:708–722.
2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sun L, Wang H, Xu D, Yu S, Zhang L and Li
X: Lapatinib induces mitochondrial dysfunction to enhance oxidative
stress and ferroptosis in doxorubicin-induced cardiomyocytes via
inhibition of PI3K/AKT signaling pathway. Bioengineered. 13:48–60.
2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Shi R, Fu Y, Zhao D, Boczek T, Wang W and
Guo F: Cell death modulation by transient receptor potential
melastatin channels TRPM2 and TRPM7 and their underlying molecular
mechanisms. Biochem Pharmacol. 190:1146642021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hickman DL: Euthanasia of neonatal rats
and mice using carbon monoxide. J Am Assoc Lab Anim Sci.
62:274–278. 2023. View Article : Google Scholar : PubMed/NCBI
|
38
|
Montaigne D, Marechal X, Modine T, Coisne
A, Mouton S, Fayad G, Ninni S, Klein C, Ortmans S, Seunes C, et al:
Daytime variation of perioperative myocardial injury in cardiac
surgery and its prevention by Rev-Erbα antagonism: a single-centre
propensity-matched cohort study and a randomised study. Lancet.
391:59–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lian ZX, Wang F, Fu JH, Chen ZY, Xin H and
Yao RY: ATP-induced cardioprotection against myocardial
ischemia/reperfusion injury is mediated through the RISK pathway.
Exp Ther Med. 12:2063–2068. 2016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Ma X, Godar RJ, Liu H and Diwan A:
Enhancing lysosome biogenesis attenuates BNIP3-induced
cardiomyocyte death. Autophagy. 8:297–309. 2012. View Article : Google Scholar : PubMed/NCBI
|
41
|
Moon BF, Iyer SK, Hwuang E, Solomon MP,
Hall AT, Kumar R, Josselyn NJ, Higbee-Dempsey EM, Tsourkas A, Imai
A, et al: Iron imaging in myocardial infarction reperfusion injury.
Nat Commun. 11:32732020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Götberg M, Olivecrona GK, Koul S, Carlsson
M, Engblom H, Ugander M, van der Pals J, Algotsson L, Arheden H and
Erlinge D: A pilot study of rapid cooling by cold saline and
endovascular cooling before reperfusion in patients with
ST-elevation myocardial infarction. Circ Cardiovasc Interv.
3:400–407. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hamamoto H, Leshnower BG, Parish LM,
Sakamoto H, Kanemoto S, Hinmon R, Miyamoto S, Gorman JH III and
Gorman RC: Regional heterogeneity of myocardial reperfusion injury:
Effect of mild hypothermia. Ann Thorac Surg. 87:164–171. 2009.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Jung KT, Bapat A, Kim YK, Hucker WJ and
Lee K: Therapeutic hypothermia for acute myocardial infarction: A
narrative review of evidence from animal and clinical studies.
Korean J Anesthesiol. 75:216–230. 2022. View Article : Google Scholar : PubMed/NCBI
|
45
|
Qin Z, Shen S, Qu K, Nie Y and Zhang H:
Mild hypothermia in rat with acute myocardial ischaemia-reperfusion
injury complicating severe sepsis. J Cell Mol Med. 25:6448–6454.
2021. View Article : Google Scholar : PubMed/NCBI
|
46
|
Maynard C, Longstreth WT Jr, Nichol G,
Hallstrom A, Kudenchuk PJ, Rea T, Copass MK, Carlbom D, Deem S,
Olsufka M, et al: Effect of prehospital induction of mild
hypothermia on 3-month neurological status and 1-year survival
among adults with cardiac arrest: Long-term follow-up of a
randomized, clinical trial. J Am Heart Assoc. 4:e0016932015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Fuernau G, Beck J, Desch S, Eitel I, Jung
C, Erbs S, Mangner N, Lurz P, Fengler K, Jobs A, et al: Mild
Hypothermia in Cardiogenic Shock Complicating Myocardial
Infarction. Circulation. 139:448–457. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Karar J and Maity A: PI3K/AKT/mTOR pathway
in angiogenesis. Front Mol Neurosci. 4:512011. View Article : Google Scholar : PubMed/NCBI
|
49
|
Sánchez-Alegría K, Flores-León M,
Avila-Muñoz E, Rodríguez-Corona N and Arias C: PI3K signaling in
neurons: A central node for the control of multiple functions. Int
J Mol Sci. 19:37252018. View Article : Google Scholar : PubMed/NCBI
|
50
|
Di-Luoffo M, Ben-Meriem Z, Lefebvre P,
Delarue M and Guillermet-Guibert J: PI3K functions as a hub in
mechanotransduction. Trends Biochem Sci. 46:878–888. 2021.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Ghigo A and Li M: Phosphoinositide
3-kinase: Friend and foe in cardiovascular disease. Front
Pharmacol. 6:1692015. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yu D, Xiong J, Gao Y, Li J, Zhu D, Shen X,
Sun L and Wang X: Resveratrol activates PI3K/AKT to reduce
myocardial cell apoptosis and mitochondrial oxidative damage caused
by myocardial ischemia/reperfusion injury. Acta Histochemica.
123:1517392021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Shen YC, Shen YJ, Lee WS, Chen MYC, Tu WC
and Yang KT: Two benzene rings with a boron atom comprise the core
structure of 2-APB responsible for the anti-oxidative and
protective effect on the ischemia/reperfusion-induced rat heart
injury. Antioxidants (Basel). 10:16672021. View Article : Google Scholar : PubMed/NCBI
|
54
|
Deng W, Ren G, Luo J, Gao S, Huang W, Liu
W and Ye S: TRPM7 mediates endoplasmic reticulum stress and
ferroptosis in sepsis-induced myocardial injury. J Bioenerg
Biomembr. 55:207–217. 2023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Ursini F and Maiorino M: Lipid
peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic
Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
57
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Yu P, Zhang J, Ding Y, Chen D, Sun H, Yuan
F, Li S, Li X, Yang P, Fu L, et al: Dexmedetomidine
post-conditioning alleviates myocardial ischemia-reperfusion injury
in rats by ferroptosis inhibition via SLC7A11/GPX4 axis activation.
Hum Cell. 35:836–848. 2022. View Article : Google Scholar : PubMed/NCBI
|