1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Luo G, Zhang Y, Etxeberria J, Arnold M,
Cai X, Hao Y and Zou H: Projections of lung cancer incidence by
2035 in 40 countries worldwide: Population-based study. JMIR Public
Health Surveill. 9:e436512023. View
Article : Google Scholar : PubMed/NCBI
|
3
|
Lu T, Yang X, Huang Y, Zhao M, Li M, Ma K,
Yin J, Zhan C and Wang Q: Trends in the incidence, treatment, and
survival of patients with lung cancer in the last four decades.
Cancer Manag Res. 11:943–953. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Chen Q, Zhang X, Shi J, Yan M and Zhou T:
Origins and evolving functionalities of tRNA-derived small RNAs.
Trends Biochem Sci. 46:790–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Kumar P, Anaya J, Mudunuri SB and Dutta A:
Meta-analysis of tRNA derived RNA fragments reveals that they are
evolutionarily conserved and associate with AGO proteins to
recognize specific RNA targets. BMC Biol. 12:782014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Lee YS, Shibata Y, Malhotra A and Dutta A:
A novel class of small RNAs: tRNA-derived RNA fragments (tRFs).
Genes Dev. 23:2639–2649. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Y, Gu X, Li Y, Huang Y and Ju S:
Multiple regulatory roles of the transfer RNA-derived small RNAs in
cancers. Genes Dis. 11:597–613. 2023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Wen JT, Huang ZH, Li QH, Chen X, Qin HL
and Zhao Y: Research progress on the tsRNA classification,
function, and application in gynecological malignant tumors. Cell
Death Discov. 7:3882021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Veneziano D, Tomasello L, Balatti V,
Palamarchuk A, Rassenti LZ, Kipps TJ, Pekarsky Y and Croce CM:
Dysregulation of different classes of tRNA fragments in chronic
lymphocytic leukemia. Proc Natl Acad Sci USA. 116:24252–24258.
2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang S, Wang R, Hu D, Zhang C, Cao P,
Huang J and Wang B: Epigallocatechin gallate modulates ferroptosis
through downregulation of tsRNA-13502 in non-small cell lung
cancer. Cancer Cell Int. 24:2002024. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tan L, Wu X, Tang Z, Chen H, Cao W, Wen C,
Zou G and Zou H: The tsRNAs (tRFdb-3013a/b) serve as novel
biomarkers for colon adenocarcinomas. Aging (Albany NY).
16:4299–4326. 2024.PubMed/NCBI
|
12
|
Balatti V, Nigita G, Veneziano D, Drusco
A, Stein GS, Messier TL, Farina NH, Lian JB, Tomasello L, Liu CG,
et al: tsRNA signatures in cancer. Proc Natl Acad Sci USA.
114:8071–8076. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Li J, Zhu L, Cheng J and Peng Y: Transfer
RNA-derived small RNA: A rising star in oncology. Semin Cancer
Biol. 75:29–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jin F, Yang L, Wang W, Yuan N, Zhan S,
Yang P, Chen X, Ma T and Wang Y: A novel class of tsRNA signatures
as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol
Cancer. 20:952021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhou J, Wan F, Wang Y, Long J and Zhu X:
Small RNA sequencing reveals a novel tsRNA-26576 mediating
tumorigenesis of breast cancer. Cancer Manag Res. 11:3945–3956.
2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang J, Shi S, Zhang W, Li C, Sun L, Ge Q
and Li X: Circ_RPPH1 facilitates progression of breast cancer via
miR-1296-5p/TRIM14 axis. Cancer Biol Ther. 25:23607682024.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Xia M, Chen J, Hu Y, Qu B, Bu Q and Shen
H: miR-10b-5p promotes tumor growth by regulating cell metabolism
in liver cancer via targeting SLC38A2. Cancer Biol Ther.
25:23156512024. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zong T, Yang Y, Zhao H, Li L, Liu M, Fu X,
Tang G, Zhou H, Aung LHH, Li P, et al: tsRNAs: Novel small
molecules from cell function and regulatory mechanism to
therapeutic targets. Cell Prolif. 54:e129772021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Goldstraw P, Chansky K, Crowley J,
Rami-Porta R, Asamura H, Eberhardt WE, Nicholson AG, Groome P,
Mitchell A, Bolejack V, et al: The IASLC lung cancer staging
project: Proposals for Revision of the TNM Stage Groupings in the
Forthcoming (Eighth) Edition of the TNM classification for lung
cancer. J Thorac Oncol. 11:39–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li
M, Liang J, Lu T, Zhan C, Lin Z, et al: LncRNA FAM83A-AS1
facilitates tumor proliferation and the migration via the
HIF-1α/glycolysis axis in lung adenocarcinoma. Int J Biol Sci.
18:522–535. 2022. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu X, Feng Y, Wang L, Shi L, Ji K, Hu N,
Du Y, Liu M and Wang M: Silencing of circ_0088036 inhibits growth
and invasion of lung adenocarcinoma through miR-203/SP1 axis. J
Biochem Mol Toxicol. 38:e236842024. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang LX, Gao J, Long X, Zhang PF, Yang X,
Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA
circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung
adenocarcinomas and squamous cell carcinomas via the
miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Zhang H, Wang SQ, Wang L, Lin H, Zhu JB,
Chen R, Li LF, Cheng YD, Duan CJ and Zhang CF: m6A
methyltransferase METTL3-induced lncRNA SNHG17 promotes lung
adenocarcinoma gefitinib resistance by epigenetically repressing
LATS2 expression. Cell Death Dis. 13:6572022. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang Y, Weng Q, Ge J, Zhang X, Guo J and
Ye G: tRNA-derived small RNAs: Mechanisms and potential roles in
cancers. Genes Dis. 9:1431–1442. 2022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Shen Y, Xie Y, Yu X, Zhang S, Wen Q, Ye G
and Guo J: Clinical diagnostic values of transfer RNA-derived
fragment tRF-19-3L7L73JD and its effects on the growth of gastric
cancer cells. J Cancer. 12:3230–3238. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen
F, Li J, Liu H and Wang H: 5′-tRF-GlyGCC: A tRNA-derived small RNA
as a novel biomarker for colorectal cancer diagnosis. Genome Med.
13:202021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Gu X, Ma S, Liang B and Ju S: Serum
hsa_tsr016141 as a Kind of tRNA-Derived fragments is a novel
biomarker in gastric cancer. Front Oncol. 11:6793662021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zhang L, Hong J, Chen W, Zhang W, Liu X,
Lu J, Tang H, Yang Z, Zhou K, Xie H, et al: DBF4 dependent kinase
inhibition suppresses hepatocellular carcinoma progression and
potentiates anti-programmed cell death-1 therapy. Int J Biol Sci.
19:3412–3427. 2023. View Article : Google Scholar : PubMed/NCBI
|
31
|
Qi Y, Hou Y and Qi L: miR-30d-5p represses
the proliferation, migration, and invasion of lung squamous cell
carcinoma via targeting DBF4. J Environ Sci Health C Toxicol
Carcinog. 39:251–268. 2021.PubMed/NCBI
|
32
|
Yuan K, Lan J, Xu L, Feng X, Liao H, Xie
K, Wu H and Zeng Y: Long noncoding RNA TLNC1 promotes the growth
and metastasis of liver cancer via inhibition of p53 signaling. Mol
Cancer. 21:1052022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zhang L, Liao Y and Tang L: MicroRNA-34
family: a potential tumor suppressor and therapeutic candidate in
cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Herschkowitz JI, Simin K, Weigman VJ,
Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S,
Chandrasekharan S, et al: Identification of conserved gene
expression features between murine mammary carcinoma models and
human breast tumors. Genome Biol. 8:R762007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Feng J, Xie L, Lu W, Yu X, Dong H, Ma Y
and Kong R: Hyperactivation of p53 contributes to mitotic
catastrophe in podocytes through regulation of the Wee1/CDK1/cyclin
B1 axis. Ren Fail. 46:23654082024. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hernández Borrero LJ and El-Deiry WS:
Tumor suppressor p53: Biology, signaling pathways, and therapeutic
targeting. Biochim Biophys Acta Rev Cancer. 1876:1885562021.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Pritchard A, Tousif S, Wang Y, Hough K,
Khan S, Strenkowski J, Chacko BK, Darley-Usmar VM and Deshane JS:
Lung tumor cell-derived exosomes promote M2 macrophage
polarization. Cells. 9:13032020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Qin Z, Yue M, Tang S, Wu F, Sun H, Li Y,
Zhang Y, Izumi H, Huang H, Wang W, et al: EML4-ALK fusions drive
lung adeno-to-squamous transition through JAK-STAT activation. J
Exp Med. 221:e202320282024. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li N, Zuo R, He Y, Gong W, Wang Y, Chen L,
Luo Y, Zhang C, Liu Z, Chen P and Guo H: PD-L1 induces autophagy
and primary resistance to EGFR-TKIs in EGFR-mutant lung
adenocarcinoma via the MAPK signaling pathway. Cell Death Dis.
15:5552024. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gu W, Liu P, Tang J, Lai J, Wang S, Zhang
J, Xu J, Deng J, Yu F, Shi C and Qiu F: The prognosis of TP53 and
EGFR co-mutation in patients with advanced lung adenocarcinoma and
intracranial metastasis treated with EGFR-TKIs. Front Oncol.
13:12884682024. View Article : Google Scholar : PubMed/NCBI
|