Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review)
- Authors:
- Jielin Song
- Yuqing Wu
- Yunli Chen
- Xu Sun
- Zhaohui Zhang
-
Affiliations: Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China, The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China, Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China - Published online on: October 18, 2024 https://doi.org/10.3892/mmr.2024.13367
- Article Number: 2
-
Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Reed J, Bain S and Kanamarlapudi V: A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab Syndr Obes Targets Ther. 14:3567–3602. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramanujam CL and Zgonis T: Salvage of Charcot foot neuropathy superimposed with osteomyelitis: A case report. J Wound Care. 19:pp. 485–487. 2010, View Article : Google Scholar : PubMed/NCBI | |
Armstrong DG, Boulton AJM and Bus SA: Diabetic Foot Ulcers and Their Recurrence. N Engl J Med. 376:2367–2375. 2017. View Article : Google Scholar : PubMed/NCBI | |
Louiselle AE, Niemiec SM, Zgheib C and Liechty KW: Macrophage polarization and diabetic wound healing. Transl Res J Lab Clin Med. 236:109–116. 2021. | |
den Dekker A, Davis FM, Kunkel SL and Gallagher KA: Targeting epigenetic mechanisms in diabetic wound healing. Transl Res J Lab Clin Med. 204:39–50. 2019.PubMed/NCBI | |
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gordon S, Plüddemann A and Martinez Estrada F: Macrophage heterogeneity in tissues: Phenotypic diversity and functions. Immunol Rev. 262:36–55. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Biswas SK, Galdiero MR, Sica A and Locati M: Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB and Beelen RHJ: Macrophages in skin injury and repair. Immunobiology. 216:753–762. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wen JH, Li DY, Liang S, Yang C, Tang JX and Liu HF: Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol. 13:9468322022. View Article : Google Scholar : PubMed/NCBI | |
Xie D and Ouyang S: The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol. 14:12792642023. View Article : Google Scholar : PubMed/NCBI | |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kelly B and O'Neill LA: Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25:771–784. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martin KE and García AJ: Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 133:4–16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kolliniati O, Ieronymaki E, Vergadi E and Tsatsanis C: Metabolic regulation of macrophage activation. J Innate Immun. 14:51–68. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mills CD and Ley K: M1 and M2 Macrophages: The chicken and the egg of immunity. J Innate Immun. 6:716–726. 2014. View Article : Google Scholar : PubMed/NCBI | |
Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
De Paoli F, Staels B and Chinetti-Gbaguidi G: Macrophage phenotypes and their modulation in atherosclerosis. Circ J. 78:1775–1781. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang S, Wu H, Rong X and Guo J: M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 106:345–358. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsui H, Sopko NA, Hannan JL, Reinhardt AA, Kates M, Yoshida T, Liu X, Castiglione F, Hedlund P, Weyne E, et al: M1 macrophages are predominantly recruited to the major pelvic ganglion of the rat following cavernous nerve injury. J Sex Med. 14:187–195. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yue Y, Yang X, Feng K, Wang L, Hou J, Mei B, Qin H, Liang M, Chen G and Wu Z: M2b macrophages reduce early reperfusion injury after myocardial ischemia in mice: A predominant role of inhibiting apoptosis via A20. Int J Cardiol. 245:228–235. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lefèvre L, Lugo-Villarino G, Meunier E, Valentin A, Olagnier D, Authier H, Duval C, Dardenne C, Bernad J, Lemesre JL, et al: The C-type lectin receptors dectin-1, MR, and SIGNR3 contribute both positively and negatively to the macrophage response to Leishmania infantum. Immunity. 38:1038–1049. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zizzo G, Hilliard BA, Monestier M and Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires ‘M2c’ polarization and MerTK induction. J Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO, Sica A, Mantovani A and Locati M: Macrophage activation and polarization. Front Biosci J Virtual Libr. 13:453–461. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Lin S, Feng W, Liu Y, Song Z, Pan G, Zhang Y, Dai X, Ding X, Chen L and Wang Y: A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol. 13:9991792022. View Article : Google Scholar : PubMed/NCBI | |
Nikovics K, Morin H, Riccobono D, Bendahmane A and Favier AL: Hybridization-chain-reaction is a relevant method for in situ detection of M2d-like macrophages in a mini-pig model. FASEB J. 34:15675–15686. 2020. View Article : Google Scholar : PubMed/NCBI | |
Atri C, Guerfali FZ and Laouini D: Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 19:18012018. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Ni H, Lan L, Wei X, Xiang R and Wang Y: Fra-1 protooncogene regulates IL-6 expression in macrophages and promotes the generation of M2d macrophages. Cell Res. 20:701–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Frantz C, Stewart KM and Weaver VM: The extracellular matrix at a glance. J Cell Sci. 123((Pt 24)): 4195–4200. 2010. View Article : Google Scholar : PubMed/NCBI | |
Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wallace HA, Basehore BM and Zito PM: Wound Healing Phases. StatPearls. StatPearls Publishing; Treasure Island (FL): 2023 | |
Huang CJ, Pu CM, Su SY, Lo SL, Lee CH and Yen YH: Improvement of wound healing by capsaicin through suppression of the inflammatory response and amelioration of the repair process. Mol Med Rep. 28:1552023. View Article : Google Scholar : PubMed/NCBI | |
Furie B and Furie BC: Mechanisms of Thrombus Formation. N Engl J Med. 359:938–949. 2008. View Article : Google Scholar : PubMed/NCBI | |
Goto S: Blood constitution: platelet aggregation, bleeding, and involvement of leukocytes. Rev Neurol Dis. 5 (Suppl 1):S22–S27. 2008.PubMed/NCBI | |
Guo S and Dipietro LA: Factors affecting wound healing. J Dent Res. 89:219–229. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues M, Kosaric N, Bonham CA and Gurtner GC: Wound Healing: A cellular perspective. Physiol Rev. 99:665–706. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, Chu XR, Li XK, Wang ZG and Ji JS: Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: Roles, opportunities and challenges. Mil Med Res. 10:362023.PubMed/NCBI | |
Wu X, He W, Mu X, Liu Y, Deng J, Liu Y and Nie X: Macrophage polarization in diabetic wound healing. Burns Trauma. 10:tkac0512022. View Article : Google Scholar : PubMed/NCBI | |
Pastar I, Marjanovic J, Stone RC, Chen V, Burgess JL, Mervis JS and Tomic-Canic M: Epigenetic regulation of cellular functions in wound healing. Exp Dermatol. 30:1073–1089. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rawat K and Shrivastava A: Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res. 71:1477–1488. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li M, Hou Q, Zhong L, Zhao Y and Fu X: Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front Immunol. 12:6817102021. View Article : Google Scholar : PubMed/NCBI | |
Fortingo N, Melnyk S, Sutton SH, Watsky MA and Bollag WB: Innate immune system activation, inflammation and corneal wound healing. Int J Mol Sci. 23:149332022. View Article : Google Scholar : PubMed/NCBI | |
Portou MJ, Baker D, Abraham D and Tsui J: The innate immune system, toll-like receptors and dermal wound healing: A review. Vascul Pharmacol. 71:31–36. 2015. View Article : Google Scholar : PubMed/NCBI | |
Landén NX, Li D and Ståhle M: Transition from inflammation to proliferation: A critical step during wound healing. Cell Mol Life Sci. 73:3861–3885. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kotwal GJ and Chien S: Macrophage differentiation in normal and accelerated wound healing. Results Probl Cell Differ. 62:353–364. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Xiong J, Qiu J, He X, Sheng H, Dai Q, Li D, Xin R, Jiang L, Li Q, et al: Type III Secretion Protein, PcrV, Impairs Pseudomonas aeruginosa Biofilm Formation by Increasing M1 Macrophage-Mediated Anti-bacterial Activities. Front Microbiol. 11:19712020. View Article : Google Scholar : PubMed/NCBI | |
Won YW, Patel AN and Bull DA: Cell surface engineering to enhance mesenchymal stem cell migration toward an SDF-1 gradient. Biomaterials. 35:5627–5635. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao Y, Xu XH and Jin L: Macrophage polarization in physiological and pathological pregnancy. Front Immunol. 10:7922019. View Article : Google Scholar : PubMed/NCBI | |
Keewan E and Naser SA: The role of notch signaling in macrophages during inflammation and infection: Implication in rheumatoid arthritis? Cells. 9:1112020. View Article : Google Scholar : PubMed/NCBI | |
Delgado AV, McManus AT and Chambers JP: Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides. 37:355–361. 2003. View Article : Google Scholar : PubMed/NCBI | |
Andreou I, Sun X, Stone PH, Edelman ER and Feinberg MW: miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 21:307–318. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deng JY, Wu XQ, He WJ, Liao X, Tang M and Nie XQ: Targeting DNA methylation and demethylation in diabetic foot ulcers. J Adv Res. 54:119–131. 2023. View Article : Google Scholar : PubMed/NCBI | |
Abbasi S, Sinha S, Labit E, Rosin NL, Yoon G, Rahmani W, Jaffer A, Sharma N, Hagner A, Shah P, et al: Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell. 28:581–583. 2021. View Article : Google Scholar : PubMed/NCBI | |
Foster DS, Januszyk M, Yost KE, Chinta MS, Gulati GS, Nguyen AT, Burcham AR, Salhotra A, Ransom RC, Henn D, et al: Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci USA. 118:e21100251182021. View Article : Google Scholar : PubMed/NCBI | |
Cai F, Wang P, Chen W, Zhao R and Liu Y: The physiological phenomenon and regulation of macrophage polarization in diabetic wound. Mol Biol Rep. 50:9469–9477. 2023. View Article : Google Scholar : PubMed/NCBI | |
Krzyszczyk P, Schloss R, Palmer A and Berthiaume F: The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes. Front Physiol. 9:4192018. View Article : Google Scholar : PubMed/NCBI | |
Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boniakowski AE, Kimball AS, Jacobs BN, Kunkel SL and Gallagher KA: Macrophage-Mediated Inflammation in normal and diabetic wound healing. J Immunol. 199:17–24. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lurier EB, Dalton D, Dampier W, Raman P, Nassiri S, Ferraro NM, Rajagopalan R, Sarmady M and Spiller KL: Transcriptome analysis of IL-10-stimulated (M2c) macrophages by next-generation sequencing. Immunobiology. 222:847–856. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ and Donners MM: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 17:109–118. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S and Rovere-Querini P: Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol. 85:779–787. 2009. View Article : Google Scholar : PubMed/NCBI | |
El Ayadi A, Jay JW and Prasai A: Current approaches targeting the wound healing phases to attenuate fibrosis and scarring. Int J Mol Sci. 21:11052020. View Article : Google Scholar : PubMed/NCBI | |
Gosain A and DiPietro LA: Aging and wound healing. World J Surg. 28:321–326. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ogle ME, Segar CE, Sridhar S and Botchwey EA: Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design. Exp Biol Med (Maywood). 241:1084–1097. 2016. View Article : Google Scholar : PubMed/NCBI | |
Madsen DH, Leonard D, Masedunskas A, Moyer A, Jürgensen HJ, Peters DE, Amornphimoltham P, Selvaraj A, Yamada SS, Brenner DA, et al: M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol. 202:951–966. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kimball A, Schaller M, Joshi A, Davis FM, denDekker A, Boniakowski A, Bermick J, Obi A, Moore B, Henke PK, et al: Ly6CHi blood monocyte/macrophage drive chronic inflammation and impair wound healing in diabetes mellitus. Arterioscler Thromb Vasc Biol. 38:1102–1114. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barman PK, Urao N and Koh TJ: Diabetes induces myeloid bias in bone marrow progenitors associated with enhanced wound macrophage accumulation and impaired healing. J Pathol. 249:435–446. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dasu MR, Thangappan RK, Bourgette A, DiPietro LA, Isseroff R and Jialal I: TLR2 expression and signaling-dependent inflammation impair wound healing in diabetic mice. Lab Investig J Tech Methods Pathol. 90:1628–1636. 2010. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, denDekker A, Kimball A, Joshi AD, El Azzouny M, Wolf SJ, Obi AT, Lipinski J, Gudjonsson JE, Xing X, et al: Epigenetic Regulation of TLR4 in Diabetic Macrophages Modulates Immunometabolism and Wound Repair. J Immunol. 204:2503–2513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dasu MR and Martin SJ: Toll-like receptor expression and signaling in human diabetic wounds. World J Diabetes. 5:219–223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bannon P, Wood S, Restivo T, Campbell L, Hardman MJ and Mace KA: Diabetes induces stable intrinsic changes to myeloid cells that contribute to chronic inflammation during wound healing in mice. Dis Model Mech. 6:1434–1447. 2013.PubMed/NCBI | |
Mirza RE, Fang MM, Ennis WJ and Koh TJ: Blocking interleukin-1β induces a healing-associated wound macrophage phenotype and improves healing in type 2 diabetes. Diabetes. 62:2579–2587. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gallagher KA, Joshi A, Carson WF, Schaller M, Allen R, Mukerjee S, Kittan N, Feldman EL, Henke PK, Hogaboam C, et al: Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes. Diabetes. 64:1420–1430. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin CW, Hung CM, Chen WJ, Chen JC, Huang WY, Lu CS, Kuo ML and Chen SG: New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers. Pharmaceutics. 14:20652022. View Article : Google Scholar : PubMed/NCBI | |
Gu XY, Shen SE, Huang CF, Liu YN, Chen YC, Luo L, Zeng Y and Wang AP: Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes. Diabetes Res Clin Pract. 102:53–59. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Liu T, Tang Y, Luo G, Liang G and He W: Epigenetic regulation of macrophage polarization in wound healing. Burns Trauma. 11:tkac0572023. View Article : Google Scholar : PubMed/NCBI | |
Pradhan L, Cai X, Wu S, Andersen ND, Martin M, Malek J, Guthrie P, Veves A and Logerfo FW: Gene expression of pro-inflammatory cytokines and neuropeptides in diabetic wound healing. J Surg Res. 167:336–342. 2011. View Article : Google Scholar : PubMed/NCBI | |
Theocharidis G and Veves A: Autonomic nerve dysfunction and impaired diabetic wound healing; the role of neuropeptides. Auton Neurosci Basic Clin. 223:1026102020. View Article : Google Scholar : PubMed/NCBI | |
Lu YZ, Nayer B, Singh SK, Alshoubaki YK, Yuan E, Park AJ, Maruyama K, Akira S and Martino MM: CGRP sensory neurons promote tissue healing via neutrophils and macrophages. Nature. 628:604–611. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kim H, Wang SY, Kwak G, Yang Y, Kwon IC and Kim SH: Exosome-Guided Phenotypic Switch of M1 to M2 Macrophages for Cutaneous Wound Healing. Adv Sci (Weinh). 6:19005132019. View Article : Google Scholar : PubMed/NCBI | |
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA and Merlo S: The treatment of impaired wound healing in diabetes: looking among old drugs. Pharm (Basel). 13:602020. | |
Mirza R and Koh TJ: Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine. 56:256–264. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gurevich DB, Severn CE, Twomey C, Greenhough A, Cash J, Toye AM, Mellor H and Martin P: Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 37:e977862018. View Article : Google Scholar : PubMed/NCBI | |
Okonkwo UA, Chen L, Ma D, Haywood VA, Barakat M, Urao N and DiPietro LA: Compromised angiogenesis and vascular Integrity in impaired diabetic wound healing. PLoS One. 15:e02319622020. View Article : Google Scholar : PubMed/NCBI | |
Al Sadoun H: Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells. 11:24302022. View Article : Google Scholar : PubMed/NCBI | |
Nacev BA, Jones KB, Intlekofer AM, Yu JSE, Allis CD, Tap WD, Ladanyi M and Nielsen TO: The epigenomics of sarcoma. Nat Rev Cancer. 20:608–623. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Mei S, Wuyun Q, Zhou L, Sun D and Yan J: Epigenetics in diabetic cardiomyopathy. Clin Epigenetics. 16:522024. View Article : Google Scholar : PubMed/NCBI | |
Ahmed M, de Winther MPJ and Van den Bossche J: Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology. 222:937–943. 2017. View Article : Google Scholar : PubMed/NCBI | |
Davis FM and Gallagher KA: Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 39:623–634. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yassi M, Chatterjee A and Parry M: Application of deep learning in cancer epigenetics through DNA methylation analysis. Brief Bioinform. 24:bbad4112023. View Article : Google Scholar : PubMed/NCBI | |
Wong WK, Yin B, Lam CYK, Huang Y, Yan J, Tan Z and Wong SHD: The Interplay Between Epigenetic Regulation and CD8+ T Cell Differentiation/Exhaustion for T Cell Immunotherapy. Front Cell Dev Biol. 9:7832272022. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Mao C, Ding Y, Rui C, Wu L, Shi A, Zhang H, Zhang L and Xu Z: Molecular and enzymatic profiles of mammalian DNA methyltransferases: structures and targets for drugs. Curr Med Chem. 17:4052–4071. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rabkin SW and Wong CN: Epigenetics in Heart Failure: Role of DNA methylation in potential pathways leading to heart failure with preserved ejection fraction. Biomedicines. 11:28152023. View Article : Google Scholar : PubMed/NCBI | |
Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hamidi T, Singh AK and Chen T: Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 7:247–265. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vatanmakanian M, Steffan JJ, Koul S, Ochoa AC, Chaturvedi LS and Koul HK: Regulation of SPDEF expression by DNA methylation in advanced prostate cancer. Front Endocrinol (Lausanne). 14:11561202023. View Article : Google Scholar : PubMed/NCBI | |
De Marco K, Sanese P, Simone C and Grossi V: Histone and DNA methylation as epigenetic regulators of DNA damage repair in gastric cancer and emerging therapeutic opportunities. Cancers (Basel). 15:49762023. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Rong H, Xu J, Cao R, Li S, Gao Y, Cheng B and Zhou T: DNA Methylation: An Important Biomarker and Therapeutic Target for Gastric Cancer. Front Genet. 13:8239052022. View Article : Google Scholar : PubMed/NCBI | |
Adam S, Klingel V, Radde NE, Bashtrykov P and Jeltsch A: On the accuracy of the epigenetic copy machine: Comprehensive specificity analysis of the DNMT1 DNA methyltransferase. Nucleic Acids Res. 51:6622–6633. 2023. View Article : Google Scholar : PubMed/NCBI | |
Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Topriceanu CC, Dev E, Ahmad M, Hughes R, Shiwani H, Webber M, Direk K, Wong A, Ugander M, Moon JC, et al: Accelerated DNA methylation age plays a role in the impact of cardiovascular risk factors on the human heart. Clin Epigenetics. 15:1642023. View Article : Google Scholar : PubMed/NCBI | |
Chen ZX and Riggs AD: DNA methylation and demethylation in mammals. J Biol Chem. 286:18347–18353. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Chang YF, Jiang SH, Li XH and Cheng HP: DNA methylation modification in Idiopathic pulmonary fibrosis. Front Cell Dev Biol. 12:14163252024. View Article : Google Scholar : PubMed/NCBI | |
Yano N and Fedulov AV: Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines. 11:13342023. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, Wu X, Wen L, Gu TP, Hu B, et al: Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 15:447–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ravichandran M, Jurkowska RZ and Jurkowski TP: Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem. 16:1419–1435. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yan J, Tie G, Wang S, Tutto A, DeMarco N, Khair L, Fazzio TG and Messina LM: Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat Commun. 9:332018. View Article : Google Scholar : PubMed/NCBI | |
Babu M, Durga Devi T, Mäkinen P, Kaikkonen M, Lesch HP, Junttila S, Laiho A, Ghimire B, Gyenesei A and Ylä-Herttuala S: Differential promoter methylation of macrophage genes is associated with impaired vascular growth in ischemic muscles of hyperlipidemic and type 2 diabetic Mice: Genome-Wide Promoter Methylation Study. Circ Res. 117:289–299. 2015. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, Tsoi LC, Wasikowski R, denDekker A, Joshi A, Wilke C, Deng H, Wolf S, Obi A, Huang S, et al: Epigenetic regulation of the PGE2 pathway modulates macrophage phenotype in normal and pathologic wound repair. JCI Insight. 5:e1384432020. View Article : Google Scholar : PubMed/NCBI | |
Park J, Lee K, Kim K and Yi SJ: The role of histone modifications: From neurodevelopment to neurodiseases. Signal Transduct Target Ther. 7:2172022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hu M, Xie J, Li S and Dai L: Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: Roles and therapeutic prospects. Stem Cell Res Ther. 14:1662023. View Article : Google Scholar : PubMed/NCBI | |
Fulton MD, Zhang J, He M, Ho MC and Zheng YG: Intricate Effects of α-Amino and Lysine Modifications on Arginine Methylation of the N-Terminal Tail of Histone H4. Biochemistry. 56:3539–3548. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shvedunova M and Akhtar A: Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI | |
Allis CD and Jenuwein T: The molecular hallmarks of epigenetic control. Nat Rev Genet. 17:487–500. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, Liu L, Wu J, Gao R, Fu L, Yang X, Zou Y, Zhang S and Luo D: SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. Int Immunopharmacol. 127:1113292024. View Article : Google Scholar : PubMed/NCBI | |
Chi G, Pei JH and Li XQ: EZH2-mediated H3K27me3 promotes autoimmune hepatitis progression by regulating macrophage polarization. Int Immunopharmacol. 106:1086122022. View Article : Google Scholar : PubMed/NCBI | |
Schaller MA: MLL1 is central to macrophage-mediated inflammation. Blood. 141:687–689. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kimball AS, Joshi A, Carson WF IV, Boniakowski AE, Schaller M, Allen R, Bermick J, Davis FM, Henke PK, Burant CF, et al: The Histone Methyltransferase MLL1 directs macrophage-mediated inflammation in wound healing and is altered in a murine model of obesity and type 2 diabetes. Diabetes. 66:2459–2471. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schliehe C, Flynn EK, Vilagos B, et al: The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 16:67–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kimball AS, Davis FM, denDekker A, Joshi AD, Schaller MA, Bermick J, Xing X, Burant CF, Obi AT, Nysz D, et al: The Histone Methyltransferase Setdb2 Modulates Macrophage Phenotype and Uric Acid Production in Diabetic Wound Repair. Immunity. 51:258–271.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davis FM, denDekker A, Joshi AD, Wolf SJ, Audu C, Melvin WJ, Mangum K, Riordan MO, Kunkel SL and Gallagher KA: Palmitate-TLR4 signaling regulates the histone demethylase, JMJD3, in macrophages and impairs diabetic wound healing. Eur J Immunol. 50:1929–1940. 2020. View Article : Google Scholar : PubMed/NCBI | |
Taipale M, Rea S, Richter K, Vilar A, Lichter P, Imhof A and Akhtar A: hMOF histone acetyltransferase is required for histone H4 lysine 16 acetylation in mammalian cells. Mol Cell Biol. 25:6798–6810. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rea S, Xouri G and Akhtar A: Males absent on the first (MOF): From flies to humans. Oncogene. 26:5385–5394. 2007. View Article : Google Scholar : PubMed/NCBI | |
denDekker AD, Davis FM, Joshi AD, Wolf SJ, Allen R, Lipinski J, Nguyen B, Kirma J, Nycz D, Bermick J, et al: TNF-α regulates diabetic macrophage function through the histone acetyltransferase MOF. JCI Insight. 5:e1323062020. View Article : Google Scholar : PubMed/NCBI | |
Mullican SE, Gaddis CA, Alenghat T, Nair MG, Giacomin PR, Everett LJ, Feng D, Steger DJ, Schug J, Artis D and Lazar MA: Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25:2480–2488. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shakespear MR, Halili MA, Irvine KM, Fairlie DP and Sweet MJ: Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 32:335–343. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Barozzi I, Termanini A, Prosperini E, Recchiuti A, Dalli J, Mietton F, Matteoli G, Hiebert S and Natoli G: Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages. Proc Natl Acad Sci USA. 109:E2865–E2874. 2012. View Article : Google Scholar : PubMed/NCBI | |
Teena R, Dhamodharan U, Ali D, Rajesh K and Ramkumar KM: Gene expression profiling of multiple histone deacetylases (HDAC) and Its Correlation with NRF2-Mediated redox regulation in the pathogenesis of diabetic foot ulcers. Biomolecules. 10:14662020. View Article : Google Scholar : PubMed/NCBI | |
Cabanel M, da Costa TP, El-Cheikh MC and Carneiro K: The epigenome as a putative target for skin repair: the HDAC inhibitor Trichostatin A modulates myeloid progenitor plasticity and behavior and improves wound healing. J Transl Med. 17:2472019. View Article : Google Scholar : PubMed/NCBI | |
Karnam K, Sedmaki K, Sharma P, Mahale A, Ghosh B and Kulkarni OP: Pharmacological blockade of HDAC3 accelerates diabetic wound healing by regulating macrophage activation. Life Sci. 321:1215742023. View Article : Google Scholar : PubMed/NCBI | |
Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, et al: Landscape of transcription in human cells. Nature. 489:101–108. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tang YB, Uwimana MMP, Zhu SQ, Zhang LX, Wu Q and Liang ZX: Non-coding RNAs: Role in diabetic foot and wound healing. World J Diabetes. 13:1001–1013. 2022. View Article : Google Scholar : PubMed/NCBI | |
Maciak P, Suder A, Wadas J, Aronimo F, Maiuri P, Bochenek M, Pyrc K, Kula-Pacurar A and Pabis M: Dynamic changes in LINC00458/HBL1 lncRNA expression during hiPSC differentiation to cardiomyocytes. Sci Rep. 14:1092024. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, et al: LncRNA-Mediated adipogenesis in different adipocytes. Int J Mol Sci. 23:74882022. View Article : Google Scholar : PubMed/NCBI | |
Zaki A, Ali MS, Hadda V, Ali SM, Chopra A and Fatma T: Long non-coding RNA (lncRNA): A potential therapeutic target in acute lung injury. Genes Dis. 9:1258–1268. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hussein RM: Long non-coding RNAs: The hidden players in diabetes mellitus-related complications. Diabetes Metab Syndr. 17:1028722023. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Zhang L, Liechty C, Zgheib C, Hodges MM, Liechty KW and Xu J: Long Noncoding RNA GAS5 regulates macrophage polarization and diabetic wound healing. J Invest Dermatol. 140:1629–1638. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kuang L, Zhang C, Li B, Deng H, Chen R and Li G: Human Keratinocyte-Derived Exosomal MALAT1 promotes diabetic wound healing by upregulating MFGE8 via microRNA-1914-3p. Int J Nanomedicine. 18:949–970. 2023. View Article : Google Scholar : PubMed/NCBI | |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S and Ghaffari SH: An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol. 234:5451–5465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kmiołek T, Rzeszotarska E, Wajda A, Walczuk E, Kuca-Warnawin E, Romanowska-Próchnicka K, Stypinska B, Majewski D, Jagodzinski PP, Pawlik A and Paradowska-Gorycka A: The Interplay between Transcriptional Factors and MicroRNAs as an Important Factor for Th17/Treg Balance in RA Patients. Int J Mol Sci. 21:71692020. View Article : Google Scholar : PubMed/NCBI | |
Self-Fordham JB, Naqvi AR, Uttamani JR, Kulkarni V and Nares S: MicroRNA: Dynamic regulators of macrophage polarization and plasticity. Front Immunol. 8:10622017. View Article : Google Scholar : PubMed/NCBI | |
Pasca S, Jurj A, Petrushev B, Tomuleasa C and Matei D: MicroRNA-155 Implication in M1 polarization and the impact in inflammatory diseases. Front Immunol. 11:6252020. View Article : Google Scholar : PubMed/NCBI | |
Moura J, Sørensen A, Leal EC, Svendsen R, Carvalho L, Willemoes RJ, Jørgensen PT, Jenssen H, Wengel J, Dalgaard LT and Carvalho E: microRNA-155 inhibition restores Fibroblast Growth Factor 7 expression in diabetic skin and decreases wound inflammation. Sci Rep. 9:58362019. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Kang Y, Sun X, Ni P, Wu M and Lu S: MicroRNA-155 inhibition promoted wound healing in diabetic rats. Int J Low Extrem Wounds. 16:74–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
Peng X, He F, Mao Y, Lin Y, Fang J, Chen Y, Sun Z, Zhuo Y and Jiang J: miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J Mol Endocrinol. 69:315–327. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hao Y, Yang L, Liu Y, Ye Y, Wang J, Yu C, Yan H, Xing Y, Jia Z, Hu C, et al: mmu-miR-145a-5p accelerates diabetic wound healing by promoting macrophage polarization toward the M2 Phenotype. Front Med. 8:7755232021. View Article : Google Scholar : PubMed/NCBI | |
Liechty C, Hu J, Zhang L, Liechty KW and Xu J: Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds. Int J Mol Sci. 21:33282020. View Article : Google Scholar : PubMed/NCBI | |
Meng Z, Zhou D, Gao Y, Zeng M and Wang W: miRNA delivery for skin wound healing. Adv Drug Deliv Rev. 129:308–318. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boca S, Gulei D, Zimta AA, Onaciu A, Magdo L, Tigu AB, Ionescu C, Irimie A, Buiga R and Berindan-Neagoe I: Nanoscale delivery systems for microRNAs in cancer therapy. Cell Mol Life Sci. 77:1059–1086. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tang XH, Guo T, Gao XY, Wu XL, Xing XF, Ji JF and Li ZY: Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications. Mol Cancer. 20:992021. View Article : Google Scholar : PubMed/NCBI | |
Yang Q, Luo Y, Ge P, Lan B, Liu J, Wen H, Cao Y, Sun Z, Zhang G, Yuan H, et al: Emodin ameliorates severe acute pancreatitis-associated acute lung injury in rats by modulating exosome-specific miRNA Expression Profiles. Int J Nanomedicine. 18:6743–6761. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ye H, Wang F, Xu G, Shu F, Fan K and Wang D: Advancements in engineered exosomes for wound repair: Current research and future perspectives. Front Bioeng Biotechnol. 11:13013622023. View Article : Google Scholar : PubMed/NCBI | |
Khalaj K, Figueira RL, Antounians L, Lauriti G and Zani A: Systematic review of extracellular vesicle-based treatments for lung injury: are EVs a potential therapy for COVID-19? J Extracell Vesicles. 9:17953652020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L and Wang Q: Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes. 67:235–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia W, Liu Y, Jiang X, Li M, Zheng S, Zhang Z, Huang X, Luo S, Khoong Y, Hou M and Zan T: Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes. J Nanobiotechnology. 21:1282023. View Article : Google Scholar : PubMed/NCBI | |
Blanpain C and Fuchs E: Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 22:339–373. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma T, Zhao Y, Shen G, Chai B, Wang W, Li X, Zhang Z and Meng Q: Novel bilayer cell patch combining epidermal stem cells and angiogenic adipose stem cells for diabetic wound healing. J Control Release. 359:315–325. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang RH, Qi SH, Shu B, Ruan SB, Lin ZP, Lin Y, Shen R, Zhang FG, Chen XD and Xie JL: Epidermal stem cells (ESCs) accelerate diabetic wound healing via the Notch signalling pathway. Biosci Rep. 36:e003642016. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Yang H, Wang Z, Tang Q, Cao X, Chen C, Dong Y, Xu Z, Lv D, Rong Y, et al: Epidermal stem cell derived exosomes alleviate excessive autophagy induced endothelial cell apoptosis by delivering miR200b-3p to Diabetic Wounds. J Invest Dermatol. 144:1134–1147.e2. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Xu H, Wang Z, Li X, Wang P, Cao X, Xu Z, Lv D, Rong Y, Chen M, et al: Analysis of miR-203a-3p/SOCS3-mediated induction of M2 macrophage polarization to promote diabetic wound healing based on epidermal stem cell-derived exosomes. Diabetes Res Clin Pract. 197:1105732023. View Article : Google Scholar : PubMed/NCBI | |
Hassan WU, Greiser U and Wang W: Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 22:313–325. 2014. View Article : Google Scholar : PubMed/NCBI | |
Markov A, Thangavelu L, Aravindhan S, Zekiy AO, Jarahian M, Chartrand MS, Pathak Y, Marofi F, Shamlou S and Hassanzadeh A: Mesenchymal stem/stromal cells as a valuable source for the treatment of immune-mediated disorders. Stem Cell Res Ther. 12:1922021. View Article : Google Scholar : PubMed/NCBI | |
Zou JP, Huang S, Peng Y, Liu HW, Cheng B, Fu XB and Xiang XF: Mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs): Potential role in healing cutaneous chronic wounds. Int J Low Extrem Wounds. 11:244–253. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mahjoor M, Fakouri A, Farokhi S, Nazari H, Afkhami H and Heidari F: Regenerative potential of mesenchymal stromal cells in wound healing: Unveiling the influence of normoxic and hypoxic environments. Front Cell Dev Biol. 11:12458722023. View Article : Google Scholar : PubMed/NCBI | |
Ti D, Hao H, Tong C, Liu J, Dong L, Zheng J, Zhao Y, Liu H, Fu X and Han W: LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 13:3082015. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Wang S, Zhang W, Zhu Y, Fan Z, Huang Y, Li F and Yang R: Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1α/TGF-β1/SMAD pathway. Stem Cell Res Ther. 13:3142022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Chen X, Wang WE and Zeng C: How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int. 2016:96827572016. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Ye C, Jiang L, Zhu X, Zhou F, Xia M and Chen Y: The bone mesenchymal stem cell-derived exosomal miR-146a-5p promotes diabetic wound healing in mice via macrophage M1/M2 polarization. Mol Cell Endocrinol. 579:1120892024. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Zhou Y, Shi Y, Zhang Y, Liu K, Liang R, Sun P, Chang X, Tang W, Zhang Y, et al: Expression of miRNA-29 in Pancreatic β Cells Promotes Inflammation and Diabetes via TRAF3. Cell Rep. 34:1085762021. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Chen B, Wang L, Sun Y, Jin Z, Liu X, Ouyang L and Liao Y: Chitosan@Puerarin hydrogel for accelerated wound healing in diabetic subjects by miR-29ab1 mediated inflammatory axis suppression. Bioact Mater. 19:653–665. 2022.PubMed/NCBI | |
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O and Cherradi N: MicroRNA therapeutics in cancer: Current advances and challenges. Cancers (Basel). 13:26802021. View Article : Google Scholar : PubMed/NCBI | |
Bhatnagar D, Ladhe S and Kumar D: Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol. 60:5954–5974. 2023. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Zhou Y, Zhang Y, Liu N, Liu J, Liu L and Fan C: Advances in MicroRNA therapy for heart failure: Clinical trials, preclinical studies, and controversies. Cardiovasc Drugs Ther. Jul 28–2023.(Epub ahead of print). View Article : Google Scholar | |
Amina SJ, Azam T, Dagher F and Guo B: A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv. 21:45–70. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yin W, Ma H, Qu Y, Wang S, Zhao R, Yang Y and Guo ZN: Targeted exosome-based nanoplatform for new-generation therapeutic strategies. Biomed Mater. 19:2024. View Article : Google Scholar | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, He Y and Zhang Y: CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res. 197:1069462023. View Article : Google Scholar : PubMed/NCBI | |
Moallemi Rad L, Sadoughi MM, Nicknam A, Colagar AH, Hussen BM, Taheri M and Ghafouri-Fard S: The impact of non-coding RNAs in the pathobiology of eye disorders. Int J Biol Macromol. 239:1242452023. View Article : Google Scholar : PubMed/NCBI | |
Titze-de-Almeida SS and Titze-de-Almeida R: Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics. 15:20352023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Duan P, Xu C, Xu D, Liu Y and Jiang J: CircRNA circ-ITCH improves renal inflammation and fibrosis in streptozotocin-induced diabetic mice by regulating the miR-33a-5p/SIRT6 axis. Inflamm Res. 70:835–846. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shang B, Xu T, Hu N, Mao Y and Du X: Circ-Klhl8 overexpression increased the therapeutic effect of EPCs in diabetic wound healing via the miR-212-3p/SIRT5 axis. J Diabetes Complications. 35:1080202021. View Article : Google Scholar : PubMed/NCBI | |
Lareyre F, Clément M, Moratal C, Loyer X, Jean-Baptiste E, Hassen-Khodja R, Chinetti G, Mallat Z and Raffort J: Differential micro-RNA expression in diabetic patients with abdominal aortic aneurysm. Biochimie. 162:1–7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu L, Wang J, Zhou X, Xiong Z, Zhao J, Yu R, Huang F, Zhang H and Chen L: Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep. 6:329932016. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Jin Y, Zhao S, Yuan H, Shi J and Zhao H: Hypoxic ADSC-derived exosomes enhance wound healing in diabetic mice via delivery of circ-Snhg11 and induction of M2-like macrophage polarization. Biomed Pharmacother. 153:1134632022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Luo Q, Li Z, Wang Y, Zhu C, Li T and Li X: Long Non-coding RNA IRAIN Inhibits VEGFA Expression via Enhancing Its DNA methylation leading to tumor suppression in renal carcinoma. Front Oncol. 10:10822020. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Wu Y and Luo Q: DNA methyltransferases-associated long non-coding RNA PRKCQ-AS1 regulate DNA methylation in myelodysplastic syndrome. Int J Lab Hematol. Apr 28–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xia T, Fu S, Yang R, Yang K, Lei W, Yang Y, Zhang Q, Zhao Y, Yu J, Yu L and Zhang T: Advances in the study of macrophage polarization in inflammatory immune skin diseases. J Inflamm (Lond). 20:332023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Lenardo MJ and Baltimore D: 30 Years of NF-κB: A blossoming of relevance to human pathobiology. Cell. 168:37–57. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Mao F, Zhang B, Zhang L, Zhang X, Wang M, Yan Y, Yang T, Zhang J, Zhu W, et al: Mouse bone marrow-derived mesenchymal stem cells induce macrophage M2 polarization through the nuclear factor-κB and signal transducer and activator of transcription 3 pathways. Exp Biol Med (Maywood). 239:366–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG and Deng W: The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. 2021:88527592021. View Article : Google Scholar : PubMed/NCBI | |
Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D and Georgopoulos NT: Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 14:89–96. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wan L, Bai X, Zhou Q, Chen C, Wang H, Liu T, Xue J, Wei C and Xie L: The advanced glycation end-products (AGEs)/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 18:809–825. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kang HJ, Kumar S, D'Elia A, Dash B, Nanda V, Hsia HC, Yarmush ML and Berthiaume F: Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. J Control Release. 333:176–187. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB and Laurence A: The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 66:311–328. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Liu Z, Tang H, Shen Y, Gong Z, Xie N, Zhang X, Wang W, Kong W, Zhou Y and Fu Y: The N6-methyladenosine (m6A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol. 317:C762–C775. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang MZ, Wang X, Wang Y, Niu A, Wang S, Zou C and Harris RC: IL-4/IL-13-mediated polarization of renal macrophages/dendritic cells to an M2a phenotype is essential for recovery from acute kidney injury. Kidney Int. 91:375–386. 2017. View Article : Google Scholar : PubMed/NCBI | |
Degboé Y, Rauwel B, Baron M, Boyer JF, Ruyssen-Witrand A, Constantin A and Davignon JL: Polarization of Rheumatoid Macrophages by TNF Targeting Through an IL-10/STAT3 Mechanism. Front Immunol. 10:32019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Stewart KN, Bishop E, Marek CJ, Kluth DC, Rees AJ and Wilson HM: Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J Immunol. 180:6270–6278. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tsogbadrakh B, Ryu H, Ju KD, Lee J, Yun S, Yu KS, Kim HJ, Ahn C and Oh KH: AICAR, an AMPK activator, protects against cisplatin-induced acute kidney injury through the JAK/STAT/SOCS pathway. Biochem Biophys Res Commun. 509:680–686. 2019. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Sun Y, Song P, Xu L, Wu X, Wu X, Shen Y, Sun Y, Kong L, Wu X and Xu Q: Seselin ameliorates inflammation via targeting Jak2 to suppress the proinflammatory phenotype of macrophages. Br J Pharmacol. 176:317–333. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Meguro K, Nakagomi D and Nakajima H: Roles of alternatively activated M2 macrophages in allergic contact dermatitis. Allergol Int. 66:392–397. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bai JW, Wei M, Li JW and Zhang GJ: Notch signaling pathway and endocrine resistance in breast cancer. Front Pharmacol. 11:9242020. View Article : Google Scholar : PubMed/NCBI | |
Singla RD, Wang J and Singla DK: Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation. Am J Physiol Heart Circ Physiol. 307:H1634–H1642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perez LG, Kempski J, McGee HM, Pelzcar P, Agalioti T, Giannou A, Konczalla L, Brockmann L, Wahib R, Xu H, et al: TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat Commun. 11:26082020. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Li Y, Wang X, Wang P, Essandoh K, Cui S, Huang W, Mu X, Liu Z, Wang Y, et al: GDF3 protects mice against sepsis-induced cardiac dysfunction and mortality by suppression of macrophage pro-inflammatory phenotype. Cells. 9:1202020. View Article : Google Scholar : PubMed/NCBI | |
Louiselle AE, Niemiec SM, Zgheib C and Liechty KW: Macrophage polarization and diabetic wound healing. Transl Res. 236:109–116. 2021. View Article : Google Scholar : PubMed/NCBI |